Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:48:22.609Z Has data issue: false hasContentIssue false

Structure, Morphology and Photocatalytic Activity of Novel Hydrothermal ZnBiVO4

Published online by Cambridge University Press:  15 February 2011

B. B. Kale
Affiliation:
Centre For Materials For Electronics Technology (C-MET), Ministry of Information and Technology, Govt. of India, Panchawati off Pashan Road, Pune–411008, India
Jin-Ook Baeg
Affiliation:
Advanced Chemical Technology Division, Korea Research Institute of Chemical Technolog, Yusong, Daejon 305-600, Republic of Korea
Sang Mi Lee
Affiliation:
Advanced Chemical Technology Division, Korea Research Institute of Chemical Technolog, Yusong, Daejon 305-600, Republic of Korea
Sang-Jin Moon
Affiliation:
Advanced Chemical Technology Division, Korea Research Institute of Chemical Technolog, Yusong, Daejon 305-600, Republic of Korea
Hyunju Chang
Affiliation:
Advanced Chemical Technology Division, Korea Research Institute of Chemical Technolog, Yusong, Daejon 305-600, Republic of Korea
Chul Wee Lee
Affiliation:
Advanced Chemical Technology Division, Korea Research Institute of Chemical Technolog, Yusong, Daejon 305-600, Republic of Korea
Get access

Abstract

We offer a synthesis of novel nanocrystalline ZnBiVO4 using hydrothermal method. The same novel catalyst was synthesized using solid-state route for the first time. We have exemplified the hydrothermal synthesis of this new compound using zinc nitrate, bismuth nitrate and ammonium metavanadate. The ZnBiVO4 was synthesized using zinc oxide, bismuth oxide and vanadium oxide by solid-state route. X-ray difractometry for its structural study and Scanning Electron Microscopy for the particle morphology characterized the resultant product. The prima facie observations revealed the formation of tetragonal crystallites of hydrothermal ZnBiVO4 ranging from 40-50nm. The BET surface area of hydrothermal ZnBiVO4 was increased 9 times as compared to solid state ZnBiVO4. The steepness of the UV-visible DRS Diffuse Reflectance Spectra) absorption edge, suggests the good crystalline nature of the material. From the photodecomposition of H2S, it is noteworthy that the hydrogen evolution was enhanced by 70% in hydrothermal ZnBiVO4.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Elsner, M. P., Menge, M., Muller, C., and Agar, D. W., Catalysis Today, 79, 487 (2003).Google Scholar
2 Linkous, C. A., Muradov, N. Z., and Ramser, S. N., Int. J. Hydrogen Energy, 20, 701 (1995).Google Scholar
3 Mills, Andew, and Hunte, Stephen Le, J. Photochem. Photobiol. A: Chemistry 108, 1 (1997).Google Scholar
4 Kato, H., and Kudo, A., J. Phys Chem B. 106, 5029 (2002).Google Scholar
5 Ishii, T., Kudo, H., and Kudo, A., J. Photochem. Photobiol. A. 163, 181 (2004).Google Scholar
6 Ishii, T., Kato, H., Kobayashi, H., and Kudo, A., J. Photochem. Photobiol. A. 163, 181 (2004).Google Scholar
7 Naman, S. A., Int. J. Hydrogen Energy, 22, 783 (1997).Google Scholar
8 Park, D., and Beag, J. O.; U.S. Patent No. 6,297,190 B1 (Oct. 2, 2001).Google Scholar
9 Park, D., and Beag, J. O.; U.S. Patent No. 6,300,274 B1 (Oct. 9, 2001).Google Scholar
10 Park, D., and Beag, J. O.; U.S. Patent No. 6,447,650 B1 (Sep.10, 2002).Google Scholar
11 Park, D., and Beag, J. O.; U.S. Patent No. 6,517,806 B1 (Feb.11, 2003).Google Scholar
12 Chang, H., Kong, K., Choi, Y., In, E., Choi, Y., Baeg, J. O., and Moon, S., Chem. Phys. Lett. 398, 449 (2004).Google Scholar
13 Kim, J., Hwang, D.W., Kim, H., Bae, S.W., Ji, S. M., and Lee, J. S., Chem. Comn. 2488 (2002).Google Scholar
14 Kim, H.G., Hwang, D.W., Lee, J. S., J. Am. Chem. Soc. 126, 89128913 (2004).Google Scholar
15 Kato, H., and Kudo, A., J. Photochem. Photobiol. A. 145, 129 (2001).Google Scholar
16 Yoshimo, M., Kakihana, M., Seok, C. W., Kato, H., and Kudo, A., Chem. Mater. 14, 3369 (2002).Google Scholar
17 Lin, J., Yu, J. C., Lo, D., and Lam, S. K., J. Catal. 183, 368 (1999).Google Scholar
18 Beydoun, D., Amal, R., Low, G. and Evoy, S. Mc, J. Nanoparticle Res., 1, 439 (1999).Google Scholar
19 So, W., Kim, K., and Moon, S., International J. Hydrogen Energy 29, 229 (2004).Google Scholar
20 Reber, J., and Meier, K., J. Phys. Chem., 88, 5903 (1984).Google Scholar
21 Tokunaga, S., Kato, H., and Kudo, A., Chem Mater. 13, 4624 (2001).Google Scholar