Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T15:35:08.776Z Has data issue: false hasContentIssue false

Structure Models of Massively Transformed High Niobium Containing TiAl Alloys

Published online by Cambridge University Press:  26 February 2011

Christina Scheu
Affiliation:
[email protected], Montanuniversität Leoben, Department Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, Leoben, 8700, Austria
Limei Cha
Affiliation:
[email protected], Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, Leoben, 8700, Austria
Saso Sturm
Affiliation:
[email protected], Jozef Stefan Institute,, Department for Nanostructured Materials, Ljubljana, N/A, Slovenia
Harald F. Chladil
Affiliation:
[email protected], Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, Leoben, 8700, Austria
Paul H. Mayrhofer
Affiliation:
[email protected], Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, Leoben, 8700, Austria
Helmut Clemens
Affiliation:
[email protected], Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, Leoben, 8700, Austria
Walter Wolf
Affiliation:
[email protected], MaterialsDesign s.a.r.l, Le Mans, N/A, France
Raimund Podloucky
Affiliation:
[email protected], University of Vienna, Department of Physical Chemistry, Vienna, N/A, Austria
Get access

Abstract

Ab-initio calculations using the Vienna ab-initio simulation package (VASP) were performed for a high Nb bearing γ TiAl based alloy with a composition of Ti-46at.%Al-9at.%Nb in order to evaluate the effect of Nb on the crystal structure. The calculations revealed that upon doping with Nb the resulting structure can have Ti and Nb atoms on Al-sites, which leads to a reduction of the c/a ratio of the tetragonal γ TiAl cell to ~1.In contrast, the c/a ratio is increased, compared to the binary phase, if the Nb atoms occupy solely Ti sites and if Ti antisite defects (i.e. Ti on the Al sublattice) are formed. The relaxed structure models were used to perform high-resolution transmission electron microscopy (HRTEM) and high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image simulations. The results showed that the positions of the Nb atoms should be detectable by these high spatial resolution methods, although it might be easier by HAADF-STEM investigations due to the stronger dependence of the signal on the atomic number Z.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Appel, F., Oehring, M., and Wagner, R., Intermetallics 8, 1283 (2000).10.1016/S0966-9795(00)00036-4Google Scholar
2. Zhang, W.J., Deevi, S.C., and Chen, G.L., Intermetallics 10, 403 (2002).Google Scholar
3. Appel, F., Mat. Sci. Eng. A317, 115 (2001).Google Scholar
4. Wu, X., Hu, D., and Loretto, J., Materials Science 39, 3935 (2004).Google Scholar
5. Wang, J.N., Yang, J., and Wang, Y., Scripta Materialia 52, 329 (2005).10.1016/j.scriptamat.2004.10.004Google Scholar
6. Aaronson, H.I. and Vasudevan, V.K., Metall Mater Trans A 33, 2445 (2002).Google Scholar
7. Veeraraghavan, D., Wang, P. and Vasudevan, V.K., Acta Mater. 51, 1721 (2003).Google Scholar
8. Clemens, H., Bartels, A., Bystrzanowski, S., Chladil, H., Leitner, H., Dehm, G., Gerling, R. and Schimansky, F.P., Intermetallics 14, 1380 (2006).Google Scholar
9. Bartels, A., Bystrzanowski, S., Chladil, H., Leitner, H., Clemens, H., Gerling, R. and Schimansky, F. P., Mater. Res. Soc. Proc. 842, S5.48.1 (2005).Google Scholar
10. Liss, K.-D., Bartels, A., Clemens, H., Bystrzanowski, S., Stark, A., Buslaps, T., Schimansky, F.-P., Gerling, R., Scheu, C. and Schreyer, A., Acta Materialia 54, 3721 (2006).Google Scholar
11. Mohandras, E. and Beaven, P. A., Scripta Metall. Mater. 25, 2023 (1991).Google Scholar
12. Rossouw, C.J., Forwood, C.T., Gibson, M.A. and Miller, P.R., Phil. Mag. A 74, 77 (1996).Google Scholar
13. Hao, Y.L., Xu, D.S., Cui, Y.Y., Yang, R. and Li, D., Acta Mater. 47, 1129 (1999).Google Scholar
14. Wolf, W., Podloucky, R., Rogl, P. and Erschbaumer, H., Intermetallics 4, 201 (1996).Google Scholar
15. Wolf, W., Podloucky, R., and Rogl, P., Mater. Res. Soc. Proc. 364, 1005 (1995).Google Scholar
16. Song, Y., Yang, R., Li, D., Hu, Z.Q. and Guo, Z.X., Intermetallics 8, 563 (2000).10.1016/S0966-9795(99)00164-8Google Scholar
17. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
18. Stadelmann, P., Ultramicroscopy 21, 131 (1987).Google Scholar
19. Watanabe, K., Yamazaki, T., Hashimoto, I. and Shiojiri, M., Phys. Rev. B 64, 115432 (2001).Google Scholar
20. Williams, D. B. and Carter, C. B., Transmission Electron Microscopy, Plenum Press, New York (1996).Google Scholar
21. Fultz, B. and Howe, J. M., Transmission Electron Microscopy and Diffractometry of Materials, Springer, Berlin (2001).Google Scholar