Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T06:44:52.130Z Has data issue: false hasContentIssue false

Structure, Mechanical Properties, and Dynamic Fracture in Nanophase Silicon Nitride via Parallel Molecular Dynamics

Published online by Cambridge University Press:  10 February 2011

Kenji Tsuruta
Affiliation:
Concurrent Computing Laboratory for Materials Simulations, Department of Physics & Astronomy, Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803–4001, E-mail: [email protected], http://www.cclms.lsu.edu
Andrey Omeltchenko
Affiliation:
Concurrent Computing Laboratory for Materials Simulations, Department of Physics & Astronomy, Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803–4001, E-mail: [email protected], http://www.cclms.lsu.edu
Aiichiro Nakano
Affiliation:
Concurrent Computing Laboratory for Materials Simulations, Department of Physics & Astronomy, Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803–4001, E-mail: [email protected], http://www.cclms.lsu.edu
Rajiv K. Kalia
Affiliation:
Concurrent Computing Laboratory for Materials Simulations, Department of Physics & Astronomy, Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803–4001, E-mail: [email protected], http://www.cclms.lsu.edu
Priya Vashishta
Affiliation:
Concurrent Computing Laboratory for Materials Simulations, Department of Physics & Astronomy, Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803–4001, E-mail: [email protected], http://www.cclms.lsu.edu
Get access

Abstract

Million-atom molecular-dynamics (MD) simulations are performed to study the structure, mechanical properties, and dynamic fracture in nanophase Si3N4. We find that intercluster regions are highly disordered: 50% of Si atoms in intercluster regions are three-fold coordinated. Elastic moduli of nanophase Si3N4 as a function of grain size and porosity are well described by a multiphase model for heterogeneous materials. The study of fracture in the nanophase Si3N4 reveals that the system can sustain an order-of-magnitude larger external load than crystalline Si3N4. This is due to branching and pinning of the crack front by nanoscale microstructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Komarneni, S., Parker, J. C., and Thomas, G. J., Nanophase and Nanocomposite Materials (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993).Google Scholar
2. Siegel, R. W. in Materials Interfaces: Atomic-Level Structure and Properties, edited by Wolf, D. and Yip, S., Chapman and Hall, London, 1992, p. 431.Google Scholar
3. Zhu, H. and Averback, R. S., Mater. Sci. Eng. A204, p. 96 (1995).Google Scholar
4. Wang, J., Wolf, D., Philpot, S. R., and Gleiter, H., Phil. Mag. 73, p. 517 (1996).Google Scholar
5. Vashishta, P. et al. , Comput. Mater. Sci. 2, p. 180 (1994).Google Scholar
6. Vashishta, P., Kalia, R. K., and Ebbsjö, I., Phys. Rev. Lett. 75, p. 858 (1995).Google Scholar
7. Loong, C.-K., Vashishta, P., Kalia, R. K., and Ebbsjö, I., Europhys. Lett. 31, p. 201 (1995).Google Scholar
8. Nakano, A., Kalia, R. K., and Vashishta, P., Phys. Rev. Lett. 75, p. 3138 (1995).Google Scholar
9. Nakano, A., Kalia, R. K., and Vashishta, P., Comput. Phys. Commun. 83, p. 197 (1994).Google Scholar
10. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.Google Scholar
11. Tuckerman, M. and Berne, B. J., J. Chem. Phys. 97, p. 1990 (1992).Google Scholar
12. Cartz, L. and Jorgensen, J. D., J. App. Phys. 52, p. 236 (1981).Google Scholar
13. Keblinski, P., Philpot, S. R., Wolf, D., and Gleiter, H., Phys. Rrev. Lett. 77, p. 2965 (1996).Google Scholar
14. Budiansky, B., J. Mech. Phys. Solids 13, p. 223 (1965).Google Scholar
15. Marder, M. and Fineberg, J., Physics Today 49, p. 24 (1996).Google Scholar