Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T10:19:51.628Z Has data issue: false hasContentIssue false

Structure, Fragmentation, and Phonons in Silicon Microclusters

Published online by Cambridge University Press:  25 February 2011

Wei Li
Affiliation:
Concurrent Computing Laboratory for Material Simulations, Department of Physics & Astronomy, and Department of Computer ScienceLouisiana State University, Baton Rouge, LA 708O3
Rajiv K. Kalia
Affiliation:
Concurrent Computing Laboratory for Material Simulations, Department of Physics & Astronomy, and Department of Computer ScienceLouisiana State University, Baton Rouge, LA 708O3
Priya Vashishta
Affiliation:
Concurrent Computing Laboratory for Material Simulations, Department of Physics & Astronomy, and Department of Computer ScienceLouisiana State University, Baton Rouge, LA 708O3
Get access

Abstract

Molecular-dynamics simulations are performed to investigate structures, vibrational spectra, and fragmentation channels of silicon microclusters ranging in size from 32 to 52 atoms. Structural information is derived from pair-distribution functions, bond-angle distributions, and the structure and statistics of rings. Molecular-dynamics simulation results for energetics suggest that 33, 39, 45 and 51 atom clusters are highly stable. These magic-number clusters have predominantly five and six membered rings. With an increase in “temperature”, most clusters tend to fragment by loosing one atom at a time. Vibrational densities of states of 32-52 atom silicon clusters show only minor deviations from the bulk behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bloomfield, L. A., Freeman, R. R., and Brown, W. L., Phys. Rew. Lett. 54, 2246 (1985)Google Scholar
2. Cheshnovsky, O., Yang, S. H., Pettiette, C. L., Craycraft, M. J., Liu, Y., and Smalley, R. E., Chemical Physics Letters, 138, 119 (1987)Google Scholar
3. Liu, Y., Zhang, Q. -L., Tittel, F. K., Curl, R. F., and Smalley, R. E., J. Chem. Phys., 85, 7434 (1986)Google Scholar
4. Wang, L., Chibante, L. P. F., Tittel, F. K., Curl, R. F., and Smalley, R. E., Chemical Physics Letters, 172, 335 (1990)Google Scholar
5. Elkind, J. L., Alford, J. M., Weiss, F. D., Laaksonen, R. T., and Smalley, R. E., J. Chem. Phys., 87, 2397 (1987)Google Scholar
6. Pacchioni, G. and Koutecky, J., J. Chem. Phys., 84, 3301 (1986)Google Scholar
7. Raghavachari, K. and Logovinsky, V., Phys. Rew. Lett. 55, 2853 (1985)Google Scholar
8. Tomanek, D. and Schluter, M. A., Phys. Rew. B36, 1208 (1987-1991)Google Scholar
9. Chelikowsky, J. R. and Phillips, J. C., Phys. Rew. B41, 5735 (1990-II)Google Scholar
10. Kaxiras, E., Phys. Rew. Lett. 64, 551 (1990)Google Scholar
11. Brenner, D. W., Dunlap, B. I., Harrison, J. A., Mintmire, J. W., Mowrey, R. C., Robertson, D.H., and White, C. T., Phys. Rew. B44, 3479 (1991-2001)Google Scholar
12. Barojas, E. Blaisten - and Levesque, D., Phys. Rew. B34, 3910 (1986)Google Scholar
13. Biswas, R., Grest, G. S. and Soukoulis, C. M., Phys. Rew. B36, 7437 (1987-2001)Google Scholar
14. Feuston, B. P., Kalia, R. K., and Vashishta, P., Phys. Rew. B35, 6222 (1987-II)Google Scholar
15. Stillinger, F. H. and Weber, T. A., Phys. Rew. B31, 5262 (1985)Google Scholar
16. In Si45, we observed an instance where two atoms fragmented.Google Scholar