Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:49:44.187Z Has data issue: false hasContentIssue false

Structure, dynamics and primitive path network of polymer nanocomposites containing spherical nanoparticles

Published online by Cambridge University Press:  13 March 2014

Argyrios Karatrantos*
Affiliation:
Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK.
Nigel Clarke
Affiliation:
Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK.
Russel J. Composto
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
Karen I. Winey
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
Get access

Abstract

We investigate the effect of nanoparticles on polymer structure, polymer dimensions and topological constraints (entanglements) in polymer melts for nanoparticle loading above percolation threshold as high as 40.9% using stochastic molecular dynamics (MD) simulations. We show unambiguously that short polymer chains are not disturbed by the presence of repulsive nanoparticles. In contrast entangled polymer chains can be perturbed by the presence of attractive nanoparticles when the polymer radius of gyration is larger than the nanoparticle radius. They can expand under the presence of attractive nanoparticles even at low nanoparticle loadings of very small nanoparticle size. We observe an increase in the number of entanglements (decrease of Ne with 40.9% volume fraction of nanoparticles dispersed in the polymer matrix) in the nanocomposites as evidenced by larger contour lengths of the primitive paths. Attraction between polymers and nanoparticles affects the entanglements in the nanocomposites and alters the primitive path.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kumar, S. K. and Krishnamoorti, R., Annu. Rev. Chem. Biomol. Eng. 1, 37 (2010).CrossRefGoogle Scholar
Tuteja, A., Duxbury, P., and Mackay, M., Phys. Rev. Lett. 100, 077801 (2008).CrossRefGoogle Scholar
Sen, S., Xie, Y., Kumar, S. K., Yang, H., Bansal, A., Ho, D. L., Hall, L., Hooper, J. B., and Schweizer, K. S., Phys.Rev. Lett. 98, 128302 (2007).CrossRefGoogle Scholar
Jouault, N., Dalmas, F., Said, S., Di Cola, E., Schweins, R., Jestin, J., and Boue, F., Macromolecules 43, 9881 (2010).CrossRefGoogle Scholar
Crawford, M. K., Smalley, R. J., Cohen, G., Hogan, B., Wood, B., Kumar, S. K., Melnichenko, Y. B., He, L., Guise, W., and Hammouda, B., Phys. Rev. Letters 110, 196001 (2013).CrossRefGoogle Scholar
Nusser, K., Neueder, S., Schneider, G. J., Meyer, M., Pyckhout-Hintzen, W., Willner, L., Radulescu, A., and Richter, D., Macromolecules 43, 9837 (2010).CrossRefGoogle Scholar
Nakatani, A., Chen, W., Schmidt, R., Gordon, G., and Han, C., Polymer 42, 3713 (2001).CrossRefGoogle Scholar
Mackay, M. E., Tuteja, A., Duxbury, P. M., Hawker, C. J., Van Horn, B., Guan, Z., Chen, G. H., and Krishnan, R. S.,Science 311, 1740 (2006).CrossRefGoogle Scholar
Kroger, M., Computer Physics Communications 168, 209 (2005).CrossRefGoogle Scholar
Shanbhag, S. and Kroger, M., Macromolecules 40, 2897 (2007).CrossRefGoogle Scholar
Hoy, R. S., Foteinopoulou, K., and Kroger, M., Phys. Rev. E. 80, 031803 (2009).CrossRefGoogle Scholar
Karayiannis, N. C. and Kroger, M., Int. J. Mol. Sci. 10, 5054 (2009).CrossRefGoogle Scholar
Jouault, N., Dalmas, F., Boue, F., and Jestin, J., Polymer 53, 761 (2012).CrossRefGoogle Scholar
Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids. (Clarendon Press, Oxford, 1987).Google Scholar
Kremer, K. and Grest, G. S., J. Chem. Phys. 92, 5057 (1990).CrossRefGoogle Scholar
Bulacu, M. and van der Giessen, E., J. Chem. Phys. 123, 114901 (2005).CrossRefGoogle Scholar
Uchida, N., Grest, G. S., and Everaers, R., J. Chem. Phys. 128, 044902 (2008).CrossRefGoogle Scholar
van Gunsteren, W. F. and Berendsen, H. C. J., Molecular Simulation 1, 173 (1988).CrossRefGoogle Scholar
Liu, J., Wu, Y., Shen, J., Gao, Y., Zhang, L., and Cao, D., Phys. Chem. Chem. Phys. 13, 13058 (2011).CrossRefGoogle Scholar
Desai, T., Keblinski, P., and Kumar, S. K., J. Chem. Phys. 122, 134910 (2005).CrossRefGoogle Scholar
Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).Google Scholar
Everaers, R., Sukumaran, S. K., Grest, G. S., Svaneborg, C., Sivasubramanian, A., and Kremer, K., Science 303, 823 (2004).CrossRefGoogle Scholar
Karatrantos, A., Clarke, N., Composto, R. J., and Winey, K. I., Soft Matter 9, 3877 (2013).CrossRefGoogle Scholar
Nusser, K., Schneider, G. I., Pyckhout-Hintzen, W., and Richter, D., Macromolecules 44, 7820 (2011).CrossRefGoogle Scholar