Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T00:41:34.343Z Has data issue: false hasContentIssue false

Structure and Stability of Olivine Phase FePO4

Published online by Cambridge University Press:  30 August 2011

Gene M. Nolis
Affiliation:
Department of Chemistry and Institute for Materials Research, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA.
Natalya A. Chernova
Affiliation:
Department of Chemistry and Institute for Materials Research, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA.
Shailesh Upreti
Affiliation:
Department of Chemistry and Institute for Materials Research, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA.
M. Stanley Whittingham
Affiliation:
Department of Chemistry and Institute for Materials Research, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA.
Get access

Abstract

LiFePO4 has shown considerable promise as a cathode material in Li-ion batteries due to its stability, low toxicity and high cyclability. However, the data on thermodynamic stability of olivine phase FePO4 (o-FePO4), the delithiated form of o-LiFePO4, remains scarce and contradictory. In this work, o-FePO4 was synthesized by chemical delithiation of o-LiFePO4 and characterized structurally and thermally. X-ray diffraction and absorption data indicate pure olivine phase, but with residual amount of Fe2+, most likely due to incomplete delithiation. Differential scanning calorimetry and thermal gravimetric analysis reveal that o-LixFePO4 decomposes exothermally above 550 °C with about 9% weight loss, the products being trigonal phase FePO4, Fe7(PO4)6, and LiPO3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Whittingham, M. S., Chem. Rev. 104, 4271 (2004)Google Scholar
2. Song, Y., Zavilij, P. Y., Suzuki, M., Whittingham, M. S., Inorg. Chem. 41, 5778 (2002)Google Scholar
3. Arroyo y de Dompalbo, M. E., Biskup, N., Gallardo-Amores, J. M., Moran, E., Ehrenberg, H., Amador, U., Chem. Mater. 22, 994 (2010)Google Scholar
4. Iyer, R. G., Delacourt, C., Masquelier, C., Tarascon, J., Navrotsky, A., Electrochem. Solid-State Lett. 9, A46 (2006)Google Scholar
5. Kim, S.-W., Kim, J., Gwon, H., and Kang, K., J. Electrochem. Soc. 156, A635 (2009)Google Scholar
6. Ong, S. P., Jain, A., Hautier, G., Kang, B., Ceder, G., Electrochem. Comm. 12, 427 (2010)Google Scholar
7. Delacourt, C., Poizot, P., Tarascon, J.-M. and Masquelier, C., Nature Mater. 4, 254 (2005)Google Scholar
8. Toby, B. H., J. Appl. Cryst. 34, 210 (2001)Google Scholar
9. Larson, A. C., VonDreele, R. B., General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, 86, 748 (2000)Google Scholar
10. Ravel, B. and Newville, M., J. Synchrotron Radiat. 12, 537 (2005)Google Scholar
11. Yakubovich, O. V., Simonov, M. A., Belov, N. V., Soviet Physics – Doklady 22, 347 (1977)Google Scholar
12. Yamada, A., Koizumi, H., Sonoyama, N., and Kanno, R., Electrochem. Solid-State Lett. 8, A409 (2005)Google Scholar
13. Rousse, G., Rodriguez-Carvajal, J., Patoux, S., Masquelier, C., Chem. Mater., 15, 4082 (2003)Google Scholar
14. Santoro, R. P., Newnham, R. E., Acta Cryst., 22, 344 (1967)Google Scholar
15. Chernova, N. A., Nolis, G. M., Omenya, F. O., Zhou, H., Li, Z. and Whittingham, M. S., J. Mater. Chem. DOI: 10.1039/c1jm00024aGoogle Scholar
16. Ramana, C. V., Mauger, A., Gendron, F., Julien, C. M. and Zaghib, K., J. Power Sources 187, 555 (2009)Google Scholar