Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T21:22:32.217Z Has data issue: false hasContentIssue false

Structure and Stability of Multivalent Metal Tetraborohydrides

Published online by Cambridge University Press:  31 January 2011

Zbigniew Łodziana
Affiliation:
Andreas Borgschulte
Affiliation:
[email protected], Empa, Hydrogen & Energy, Dubendorf, Switzerland
Robin Germaud
Affiliation:
[email protected], Empa, Hydrogen & Energy, Dubendorf, Switzerland
Arndt Remhof
Affiliation:
[email protected], Empa, Hydrogen & Energy, Dubendorf, Switzerland
Andreas Züttel
Affiliation:
[email protected], Empa, Hydrogen & Energy, Dubendorf, Switzerland
Get access

Abstract

Metal tetrahydroborates remain interesting materials as potential hydrogen storage media. In the present paper, we analyze thermodynamic stability of borohydrides of Al and Zr by means of extensive density functional calculations. We show that solid phases of these compounds are formed by dispersive Van der Waals forces. These compounds are thermodynamically unstable at room temperature with respect to decomposition to boron and hydrogen. Their stability is explained by formation of diborane as a necessary step in the decomposition path, pointing out to the kinetic factors that are important for the stability analysis of metal borohydrides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schlapbach, L. and Züttel, A., Nature, 414 353 (2001).Google Scholar
2. Grochala, W. and Edwards, P. Chem. Rev., 104 1283 (2004).Google Scholar
3. Marks, T. and Kolb, J. Chem. Rev., 77 263 (1977).Google Scholar
4. Buchter, F. Eodziana, Z. Mauron, P. Remhof, A. Friedrichs, O. Borgschulte, A. Züttel, A., Sheptyakov, D. Straessle, T. Ramirez-Cuesta, A.J., Phys. Rev. B78 094302 (2008).Google Scholar
5. Ozolins, V. Majzoub, E.H. Wolverton, C. Phys. Rev. Lett., 100 135501 (2008).Google Scholar
6. Voss, J. Hummelshoj, J.S. Eodziana, Z. Vegge, T. J. Phys.: Condens. Matter 21 012203 (2009).Google Scholar
7. Filinchuk, Y. Roennebro, E. Chandra, D. Acta Mater., 57 732 (2009).Google Scholar
8. Buchter, F. et al. , J. Phys. Chem. C113 17223 (2009).Google Scholar
9. Demachy, I. Volatron, F. Inorg. Chem., 33 3965 (1994).Google Scholar
10. Hoekstra, H. Katz, J. J. Am. Chem. Soc., 71 2488 (1949).Google Scholar
11. Kresse, G. and Furthmüller, J., Phys. Rev. B54 11169 (1996).Google Scholar
12. Perdew, J. P. Burke, K. Ernzerhof, M. Phys. Rev. Lett., 77 3865 (1996).Google Scholar
13. Eodziana, Z. and Parlinski, K. Phys. Rev. B67 174106 (2003).Google Scholar
14. Al-Kahtani, A., Williams, D.L. Nibler, J.W. Sharpe, S.W. J. Phys. Chem. A102 537 (1998).Google Scholar
15. Gurvich, L. Veyts, I.V. Alcock, C.B. Thermodynamic Properties of Individual Substances, 4th ed.; Hemisphere Pub. Co., New York, 1989.Google Scholar