Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:27:22.248Z Has data issue: false hasContentIssue false

Structure and stability of complex metal hydrides – theoretical approach

Published online by Cambridge University Press:  01 February 2011

Zbigniew Łodziana
Affiliation:
Center for Atomic-scale Materials Physics and Department of Physics, DTU, Building 307, DK-2800 Lyngby, Denmark IFJ-PAN, ul. Radzikowskiego 152, Kraków, Poland
Tejs Vegge
Affiliation:
Center for Atomic-scale Materials Physics and Department of Physics, DTU, Building 307, DK-2800 Lyngby, Denmark Materials Research Department, Risoe National Laboratory, DK-4000 Roskilde, Denmark.
Get access

Abstract

In this paper systematic approach to study the structural stability of the complex hydride, LiBH4 is presented. The ground state energies of various symmetry structures are determined by means of Density Functional Theory. Simulated annealing method is used to confirm if ground state structures represent real energy minima. The vibrational spectrum and temperature dependence of the free energy of the structures with the lowest energies is determined. Calculated Raman active modes for three symmetries are presented. We show that at high temperatures LiBH4 possesses monoclinic symmetry and some of the low energy structures are unstable with respect to atomic vibrations. Our studies point to the necessity of calculation of the phonon spectra for complex metal hydrides that contain covalently bounded hydrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schlapbach, L. and Züttel, A., Nature 414, 353 (2001).Google Scholar
2. Bogdanovic, B. and Schwickardi, M., J. Alloys and Compounds 253, 1 (1997).Google Scholar
3. Züttel, A., Wenger, P., Rentsch, S., Sudan, P., Mauron, Ph., Emmenegger, Ch., Power, J. Sources, 118, 1 (2003).Google Scholar
4. Łodziana, Z. and Vegge, T., Phys. Rev. Lett. 93, 145501 (2004).Google Scholar
5. Vegge, T., Phys. Rev. B 70, 035412 (2004).Google Scholar
6. Kresse, G. and Furthmüller, J., computer code VASP, (Vienna, Austria 1999), Comput. Mater. Sci. 6, 15 (1996).Google Scholar
7. Blöchl, P.E., Phys. Rev. B, 50 17953 (1994).Google Scholar
8. Bellaiche, L. and Kunc, K., Phys. Rev. B, 55, 5006 (1997).Google Scholar
9. Perdew, J.P., Chevary, J. A., Vosko, S. H., Jackson, K.A., Pederson, M.R., Singh, D.J., and Fiolhais, C., Phys. Rev. B, 46, 6671 (1992).Google Scholar
10. Parliński, K., Phonon software, Kraków, Poland Google Scholar
11. Soulie, J-Ph., Renaudin, G., Cerny, R., Yvon, K., J. Alloy Comp. 346, 200 (2002).Google Scholar
12. Arroyo y de Dompablo, M.E., Ceder, G., J. Alloy Comp. 364, 6 (2004).Google Scholar
13. Parlinski, K., Li, Z.Q., and Kawazoe, Y., Phys. Rev. Lett. 78, 4063 (1997).Google Scholar
15. Miva, K., Ohuba, N., Towata, S-i., Nakamori, Y., and Otimo, S-i., Phys. Rev. B, 69, 245120 (2004).Google Scholar
16. Ge, Q., J. Phys. Chem. A, 108, 8682 (2004).Google Scholar