Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T09:25:26.772Z Has data issue: false hasContentIssue false

Structure and Magnetism of Co and CoAg Nanocrystals

Published online by Cambridge University Press:  01 February 2011

Marina Spasova
Affiliation:
Institut für Halbleiterphysik und Optik, Technische Universität Braunschweig
Tamara Radetic
Affiliation:
NCEM, Lawrence Berkeley Laboratory, Cyclotron Road, Berkeley, California 94720 U.S.A.
Nelli S. Sobal
Affiliation:
Hahn-Meitner-Institut, Glienicker Strasse 100, 14109 Berlin, Germany
Michael Hilgendorff
Affiliation:
Hahn-Meitner-Institut, Glienicker Strasse 100, 14109 Berlin, Germany
Ulf Wiedwald
Affiliation:
Institut für Halbleiterphysik und Optik, Technische Universität Braunschweig
Michael Farle
Affiliation:
Institut für Halbleiterphysik und Optik, Technische Universität Braunschweig
Michael Giersig
Affiliation:
Hahn-Meitner-Institut, Glienicker Strasse 100, 14109 Berlin, Germany
Uli Dahmen
Affiliation:
NCEM, Lawrence Berkeley Laboratory, Cyclotron Road, Berkeley, California 94720 U.S.A.
Get access

Abstract

Monodisperse, air-stable Co/CoO and CoAg55 nanoparticles with a mean diameter of about 11 nm have been synthesized using methods of colloidal chemistry. High resolution transmission electron microscopy (TEM) and Electron Energy-Loss Spectroscopy (EELS) element-specific TEM images reveal a multiply-twinned fcc Co metallic core covered with a 2-2.5 nm thick CoO shell. The lattice parameters are in agreement with those of bulk Co and CoO. A shift of the hysteresis loop of 0.4 T, induced by field CoOling of the Co/CoO particles, indicates a strong unidirectional exchange anisotropy due to the interaction between the ferromagnetic Co core and the antiferromagnetic CoO shell. CoAg55 composite particles consist of grains of fcc Co and fcc Ag. No evidence for alloy formation was observed. Electron energy-loss and X-ray microanalysis indicate that Co is predominantly found in the surface region of the particles. SQUID magnetometry shows that at room temperature the CoAg55 particles are superparamagnetic while at 90 K a hysteresis loop was detected with a coercive field of 0.07 T and a remanent magnetization of 32 % of the saturation value.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weller, D. and Moser, A., IEEE Trans. Magn. 35, 4423 (1999).Google Scholar
2. Murray, C. B., Sun, S., Doyle, H., and Betley, T., MRS Bulletin 26, 985 (2001).Google Scholar
3. Giersig, M., Hilgendorff, M., J. Phys. D: Appl. Phys. 32, L111 (1999).Google Scholar
4. Hilgendorff, M., Tesche, B., and Giersig, M., Aust. J. Chem. 54, 497 (2001).Google Scholar
5. Spasova, M., Wiedwald, U., Ramchal, R., Farle, M., Hilgendorff, M., and Giersig, M., J. Magn. Magn. Mater. 240, 40 (2002).Google Scholar
6. Meiklejohn, W. H. and Bean, C.P., Phys. Rev. 105, 904 (1957).Google Scholar
7. Peng, D. L., Sumiyama, K., Hihara, T., Yamamuro, S., and Konno, T. J., Phys.Rev. B61, 3103 (2000).Google Scholar
8. Guevara, J., Llois, A. M., and Weissmann, M., Phys. Rev. Lett. 81, 5306 (1998).Google Scholar
9. Sobal, N. S., Hilgendorff, M., Möhwald, H., Giersig, M., Spasova, M., Radetic, T., and Farle, M., Nano Letters, in press (2002).Google Scholar