No CrossRef data available.
Article contents
Structure and Dynamics of Network Glasses at Large Positive and Negative Pressures - a Molecular Dynamics Study
Published online by Cambridge University Press: 25 February 2011
Abstract
Using the molecular dynamics (MD) method, the nature of crystalline fragments in SiSe2 glass (a-SiSe2) at normal pressure, structural transformation and the loss of intermediate range order in SiO2 glass at very large positive pressures, and the modification of SiO2 glass network at very large negative pressures have been investigated. Implementations of the MD algorithm on the Connection Machine and Intel iPSC/860 machine are discussed.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1993
References
1.
Uemura, O.
et al. , Phys. Status Solidi (a)
32
K91 (1975); O. Uemura et al., J. Non- Cryst. Solids 30 155 (1978).Google Scholar
2.
Fuoss, F. H.
et al. , Phys. Rev. Lett.
46, 1537 (1981); P. H. Fuoss and A. Fisher- Colbrie, Phys. Rev. B 38, 1875 (1988).Google Scholar
3.
Moss, S. C. and Price, D. L., in Physics of Disordered Materials, edited by Adler, D., Fritzsche, H., and Ovshinsky, S. R. (Plenum, New York, 1985), p. 77.Google Scholar
4.
Busse, L. E. and Nagel, S. R., Phys. Rev. Lett.
47, 1848 (1981); L. E. Busse, Phys. Rev. B 29, 3639 (1981).Google Scholar
5.
Grimsditch, M., Phys. Rev. Lett.
52, 2379 (1984); Phys. Rev. B 34, 4372 (1986). A. Polian and M. Grimsditch, Phys.Rev. B 41, 6086 (1990).Google Scholar
6.
McMillan, P., Piriou, B., and Couty, R., J. Chem. Phys.
81, 4234 (1984); B. Velde and R. Couty, J. Non-Cryst. Solids 94, 238 (1987).Google Scholar
7.
Hemley, R. J., Mao, H. K., Bell, P. M., and Mysen, B.O., Phys. Rev. Lett.
57, 747 (1986).Google Scholar
11.
Woodcock, L. V., Angell, C. A., and Cheeseman, P., J. Chem. Phys.
65, 1565 (1976).Google Scholar
16.
Chelikowsky, J. R.
et al. , Phys. Rev. Lett.
65, 3309 (1990); N. R. Keskar, et. al., Phys. Rev. B 44, 4081 (1991).Google Scholar
18.
Binggeli, N. and Chelikowsky, J. R., Nature
353, 344 (1991); Phys. Rev. Lett. 69, 2220 (1992).Google Scholar
22.
Vashishta, P., Kalia, R. K., Rino, J. P., and Ebbsjb, I., Phys. Rev.
B 41, 12197 (1990).Google Scholar
23.
Antonio, G. A., Kalia, R. K. and Vashishta, P., J. Non-Cryst. Solids
106, 305 (1988).Google Scholar
24.
Antonio, G. A., Kalia, R. K., Nakano, A., and Vashishta, P., Phys. Rev.
B 45, 7455 (1992).Google Scholar
28.
Frenkel, D., in Simple Molecular Systems at High Density, Edited by Polian, A., Loubeyre, P. and Boccara, N. (Plenum, New York, 1989), p. 411.Google Scholar
29.
Greenwell, D. L., Kalia, R. K., Patterson, J. C., and Vashishta, P., in Scientific Applications of the Connection Machine, Edited by Simon, H. D. (World Scientific, Singapore, 1989), p. 252; Int. J. High Speed Computing 1, 321 (1989).Google Scholar
30.
Nakano, A., Kalia, R. K., Leeuw, S. W. de, Greenwell, D. L., and Vashishta, P., Proceedings of Intel Workshop on Technology Focus, Timberline Lodge, OR, April 5-7, 1992.Google Scholar
31.
Kalia, R. K., Leeuw, S. W. de, Nakano, A., Greenwell, D. L., and Vashishta, P., SIAM J. Sci. Stat. Comput., submitted.Google Scholar
32.
Nakano, A., Kalia, R. K., and Vashishta, P., SIAM J. Sci. Stat. Comput., submitted.Google Scholar
33.
Kalia, R. K., Leeuw, S. W. de, Nakano, A., and Vashishta, P., SIAM J. Sci. Stat. Comput., in press.Google Scholar
35.
Tenhover, M., Hazel, M. A., and Grasselli, R. K., Phys. Rev. Lett.
51, 404 (1983).Google Scholar
38.
Susman, S., Volin, K. J., Montague, D. G., and Price, D. L., Phys. Rev.
B 43, 11076 (1991).Google Scholar
40.
Vacher, R., Woignier, T., Pelous, J., and Courtens, E., Phys. Rev. B
37, 6500 (1986); R. Vacher, T. Woignier, J. Phalippou, and J. Pelous, J. Non-Cryst. Solids 106, 161 (1988).Google Scholar
42.
Lours, T., Zarzycki, J., Craievich, A. F., and Aegerter, M. A., J. Non-Cryst. Solids
121, 216 (1990).Google Scholar
44.
Guinier, A. and Fournet, G., Small Angle Scattering of X-rays (Wiley, New York, 1955).Google Scholar