Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:39:28.647Z Has data issue: false hasContentIssue false

Structure and Dynamics of Aluminum Clusters

Published online by Cambridge University Press:  28 February 2011

J. Bernholc
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695–8202.
Jae-Yel Yi
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695–8202.
Dirk J. Oh
Affiliation:
P. O. Box 7, Dae-Duk Dan-Ji, Korea Advanced Energy Research Institute, Chung-Nam, Korea.
D. J. Sullivan
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695–8202.
Get access

Abstract

The energetics and structures of metallic clusters containing up to 55 atoms are studied by the Car-Parrinello (quantum-molecular dynamics) method with Al chosen as a paradigm. It is found that the structural energy differences between small cluster (icosahedral) and bulk (fee) structures are surprisingly small, indicating that the icosahedron-fee structural transition can occur very early in Al clusters. Simulated annealing studies for 13- and 55-atom clusters, where both perfectly symmetric icosahedral and cuboctahedral (fee) structures exist, show that the distortions from the ideal structures are substantial. For the 55-atom cluster several inequivalent but energetically nearly degenerate structures are found, which is likely to lead to floppiness at finite temperatures as well as a low melting point. Although the structure factors for the annealed structures are nearly identical, they are very different from those of either of the ideal structures. The computed IPs and EAs differ by less than 0.1 eV for weakly annealed cuboctahedral and icosahedral clusters, making the structural identification on the basis of IP and EA measurements very difficult. The quantum-mechanical results are also used to develop a classical potential for long-time molecular dynamics simulations of large clusters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Knight, W. D., Clemenger, K., de Heer, W. A., Saunders, W. A., Chou, M. Y., and Cohen, M. L, Phys. Rev. Lett. 52, 2141 (1984);CrossRefGoogle Scholar
de Heer, W. A., Knight, W. D., Chou, M. Y., and Cohen, M. L., Solid State Phys. 40, 93 (1987).CrossRefGoogle Scholar
2. Cox, D. M., Trevor, D. J., Whetten, R. L., and Kaldor, A., J. Phys. Chem. 92, 421 (1988).CrossRefGoogle Scholar
3. Ganteför, G., Gausa, M., Meiwes-Broer, K. H., and Lutz, H. O., Z. Phys. D 9, 253 (1988).Google Scholar
4. Taylor, K. J., Pettiette, C. L., Craycraft, M. J., Chesnovsky, O., and Smalley, R. E., Chem. Phys. Lett. 182, 347 (1988).Google Scholar
5. Schriver, K. E., Persson, J. L., Honea, E. C., and Whetten, R. L., Phys. Rev. Lett. 64, 2539 (1990).Google Scholar
6. Yi, J.-Y., Oh, D. J., Bernholc, J., and Car, R., Chem. Phys. Lett. 174, 461 (1990).CrossRefGoogle Scholar
7. Bernholc, J. and Phillips, J. C., J. Chem. Phys. 85, 3258 (1986).Google Scholar
8. Diefenbach, J. and Martin, T. P., 83, 4585 (1985).Google Scholar
9. Parks, E. K., Liu, K., Richtmeier, S. C., Pobo, L. G., and Riley, S. J., J. Chem. Phys. 82, 5470 (1985).CrossRefGoogle Scholar
10. Ijima, S. and Ichihashi, T., Phys. Rev. Lett. 56, 616 (1986).CrossRefGoogle Scholar
11. Montano, P. A., Shenoy, G. K., Alp, E. E., Schulze, W., and Urban, J., Phys. Rev. Lett. 56, 2076 (1986).Google Scholar
12. Poppa, H., Moorhead, R. D., and Avalos-Borja, M., J. Vac. Sci. Technol. A 7, 2882 (1989).CrossRefGoogle Scholar
13. Phillips, J. C., Chem. Rev. 86, 619 (1986).Google Scholar
14. Allpress, J. G. and Sanders, J. V., Aust. J. Phys. 23, 23 (1970).Google Scholar
15. Upton, T. H., J. Chem. Phys. 86, 7054 (1987).Google Scholar
16. Ballone, P., Andreoni, W., Car, R., and Parrinello, M., Europhys. Lett. 8, 73 (1989).Google Scholar
17. Williams, A.R. and von Barth, U., in Theory of the Inhomogeneous Electron Gas, Lundquist, S. and March, N., Eds. Plenum Press, New York, (1983).Google Scholar
18. Cohen, M. L., Ann. Rev. Mater. Sci. 14, 119 (1984);Google Scholar
Cohen, M. L. and Louie, S. G., Ann. Rev. Phys. Chem. 35, 537 (1984).CrossRefGoogle Scholar
19. Meng, J., Rao, B. K., Khanna, S. N., and Jena, P., Bull. Am. Phys. Soc. 35, 604 (1990), and to be published.Google Scholar
20. Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).CrossRefGoogle Scholar
21. Ballone, P., Andreoni, W., Car, R., and Parrinello, M., Phys. Rev. Lett. 60, 271 (1988).Google Scholar
22. For systems where the energy gap between occupied and unoccupied levels is small, a transfer of energy between the electrons and the ions can occur and special cooling procedures are necessary.Google Scholar
23. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., Science 220, 671 (1983).Google Scholar
24. Stich, I., Car, R., Parrinello, M., and Baroni, S., Phys. Rev. B 39, 4997 (1989);CrossRefGoogle Scholar
Teter, M. P., Payne, M. C., and Allan, D. C., Phys. Rev. B 40, 12255 (1989).CrossRefGoogle Scholar
25. Yi, J.-Y., Bernholc, J., and Salamon, P., Comp. Phys. Lett, in press (1991).Google Scholar
26. Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984);Google Scholar
Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983 (1986).CrossRefGoogle Scholar
27. Norskov, J. K. and Lang, N. D., Phys. Rev. B 21, 2131 (1980);CrossRefGoogle Scholar
Norskov, J. K., Phys. Rev. B 26, 2875 (1982);CrossRefGoogle Scholar
Jacobsen, K. W., Norskov, J. K., and Puska, M. J., Phys. Rev. 35, 7423 (1987).Google Scholar
28. Bachelet, G. B., Hamann, D. R., and Schlüter, M., Phys. Rev. B 26, 4199 (1982).Google Scholar