Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:45:31.875Z Has data issue: false hasContentIssue false

Structure and Bonding Properties of a 20-Gold-Atom Nanocluster Studied by Theoretical X-ray Absorption Spectroscopy

Published online by Cambridge University Press:  25 May 2015

Rui Yang
Affiliation:
Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4R2
Daniel M. Chevrier
Affiliation:
Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4R2
Peng Zhang*
Affiliation:
Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4R2 Department of Chemistry and School of Biomedical Engineering, Dalhousie University, Halifax, NS, B3H 4R2
Get access

Abstract

Gold nanoclusters with precisely controlled atomic composition have emerged as promising materials for applications in nanotechnology because of their unique optical, electronic and catalytic properties. The recent discovery of a 20-gold-atom nanocluster protected by 16 organothiolate molecules, Au20(SR)16, is the smallest member in a surprising series of small gold−thiolate nanoclusters with a face-centered cubic (FCC) ordered core structures. A fundamental challenge facing gold nanocluster research is being able to understand the composition-dependent properties from a site-specific perspective in order to confidently establish structure-property relationships. A step in this direction is to examine the influence of various structural features (core geometry and thiolate-gold bonding motifs) on the bonding properties of gold-thiolate nanoclusters. In this work, ab initio simulations were conducted to systematically study the local structure and electronic properties of Au20(SR)16 from each unique Au and S atomic site using Au L3-edge extended X-ray absorption fine structure (EXAFS), projected density of states (l-DOS) and S K-edge X-ray absorption near edge structure (XANES) spectra. Two larger FCC-like gold-thiolate nanoclusters (Au28(SR)20 and Au36(SR)24) were used for a comparative study with Au20(SR)16, providing further predictions about the cluster size effect on the bonding properties of gold-thiolate nanoclusters with FCC-like core structures. Through this comparison, the smaller core size of Au20(SR)16 produces an EXAFS scattering signature that is non-FCC-like but shows very similar electronic properties with a larger FCC-like gold-thiolate nanocluster.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Daniel, M. C.; Astruc, D. Chem. Rev., 104, 293346. (2004).CrossRefGoogle Scholar
Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 105, 11031169 (2005).CrossRefGoogle Scholar
Sardar, R.; Funston, A. M.; Mulvaney, P.; Murray, R. W. Langmuir 25, 1384013851 (2009).CrossRefGoogle Scholar
Jin, R. Nanoscale 2, 343362 (2010).CrossRefGoogle Scholar
Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Science, 318, 430433 (2007).CrossRefGoogle Scholar
MacDonald, M. A.; Chevrier, D. M.; Zhang, P.; Qian, H. F.; Jin, R. C., J. Phys. Chem. C, 115, 1528215287 (2011).CrossRefGoogle Scholar
MacDonald, M. A.; Zhang, P.; Chen, N.; Qian, H. F.; Jin, R. C., J. Phys. Chem. C, 115,6569 (2011).CrossRefGoogle Scholar
MacDonald, M. A.; Zhang, P.; Qian, H. F.; Jin, R. C., J. Phys. Chem. Lett., 1, 18211825 (2010).CrossRefGoogle Scholar
Zeng, C.; Li, T.; Das, A.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc., 135, 1001110013 (2013).CrossRefGoogle Scholar
Crasto, D.; Malola, S.; Brosofsky, G.; Dass, A.; Hakkinen, H. J. Am. Chem. Soc., 136, 50005005 (2014).CrossRefGoogle Scholar
Zeng, C.; Qian, H.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. Angew. Chem. Int. Ed. 51, 1311413118 (2012).CrossRefGoogle Scholar
Macdonald, M. A.; Chen, N.; Qian, H.; Zhang, P.; Jin, R. J. Phys. Chem. C, 115, 65, (2011).CrossRefGoogle Scholar
Macdonald, M. A.; Chevrier, D. M.; Qian, H.; Zhang, P.; Jin, R. J. Phys. Chem. C, 115, 15282 (2011).CrossRefGoogle Scholar
Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Phys. Rev. B, 58, 7565 (1998).CrossRefGoogle Scholar
Zeng, C.; Liu, C.; Chen, Y.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc., 136, 1192211925 (2014).CrossRefGoogle Scholar
Chevrier, D. M.; Zeng, C.; Jin, R.; Chatt, A.; Zhang, P. J. Phys. Chem. C, 119, 12171223 (2015).CrossRefGoogle Scholar