Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:52:14.830Z Has data issue: false hasContentIssue false

Structural Transitions induced by Colloidal Interactions in Ceramic Dispersions

Published online by Cambridge University Press:  21 February 2011

Raj Rajagopalan*
Affiliation:
Department of Chemical Engineering, University of Houston, Houston, Texas 77204-4792
Get access

Abstract

A discussion of the formation of periodic colloid structures, liquid-like ordering, and compact and fractal aggregates caused by colloidal forces in ceramic dispersions is presented. Construction of phase diagrams based on simple forms of repulsive potentials is often not adequate, and it is important to include appropriate attractive interactions in the theoretical analyses. Examples of radial distribution functions, osmotic prsueadphase diagrams are given for dispersions interacting through Derjaguin-Landau-Verwey-Overbeek potentials. Densification of colloidal aggregates dlue to positional relaxation and the effects of such densification on the structure of the aggregates are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Tarasevich, B. J., Liu, J., Sarikaya, M., and Aksay, I. A., in Better Ceramics Through Chemistry III, MRS Proc., Vol.121, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Materials Research Society, Pittsburgh, PA, 1988) p. 225.Google Scholar
2. Rabinovitch, E. M., Johnson, D. W., MacChesney, J. B., and Vogel, E. M., J. Amer. Cer. Soc. 66, 683 (1983).Google Scholar
3. Brinker, C. J., Drotning, W. D., and Scherer, G. W., in Better Ceramics Through Chemistry, MRS Proc., Vol.32, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Elsevier Sci. Publ., New York, NY, 1984) p. 25.Google Scholar
4. Wong, K., Cabane, B. and Duplessix, R., J. Colloid Interface Sci. 123, 446 (1988).Google Scholar
5. Ise, N. and Sogami, I., Eds., Ordering and Organisation in Ionic Solutions (World Scientific, Singapore, 1988).Google Scholar
6. Safran, S. A. and Clark, N. A., Eds., Physics of Complex and Supermolecular Fluids (Wiley, New York, 1987).Google Scholar
7. Hirtzel, C. S. and Rajagopalan, Raj, Colloidal Phenomena: Advanced Topics (Noyes Publ., Park Ridge, NJ, 1985).Google Scholar
8. Schaefer, D. W. and Keefer, K. D., in Fractals in Physics, edited by Pietronero, L. and Tosatti, E. (North-Holland, Amsterdam, 1986) p. 39.Google Scholar
9. Ottewill, R. H., in Ordering and Organisation in Ionic Solutions, edited by Ise, N. and Sogami, I. (World Scientific, Singapore, 1988) p. 421.Google Scholar
10. Hurd, A. J., Clark, N. A., Mockler, R. C., and O'Sullivan, W. J., Phys. Rev. A 26, 2869 (1982).Google Scholar
11. Tang, Y., Malzbender, R. M., Mockler, R. C., O'Sullivan, W. J., and Beall, J. A., J. Phys. A: Math. Gen. 20, L189 (1987).Google Scholar
12. Kremer, K., Robbins, M. O., and Grest, G. S., Phys. Rev. Lett. 57, 2694 (1986).Google Scholar
13. Kremer, K., Grest, G. S., and Robbins, M. O., J. Phys. A: Math. Gen. 20, L181 (1987).Google Scholar
14. Ise, N., Okubo, T., Sugimura, M., Ito, K., and Nolte, M. J., J. Chem. Phys. 78, 323 (1983).Google Scholar
15. Ise, N., Okubo, T., Sugimura, M., Ito, K., and Nolte, M. J., J. Chem. Phys. 78, 536 (1983).Google Scholar
16. Ise, N., Okubo, T., Yamamoto, K., Matsuoka, M., Kawai, H., Hashimoto, T., and Fujimura, M., J. Chem. Phys. 78, 541 (1983).Google Scholar
17. Feder, J., Fractals (Plenum Press, New York, 1988).Google Scholar
18. Jullien, R. and Botet, R., Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).Google Scholar
19. Meakin, P., in Time-Dependent Effects in Disordered Materials, edited by Pynn, R. and Riste, T. (Plenum Press, New York,1987) p. 45.Google Scholar
20. Meakin, P., Phys. Rev. A 35, 2234 (1987).Google Scholar
21. Meakin, P., in Phase Transitions and Critical Phenomena, edited by Domb, C. and Lebowitz, J. L. (Academic Press, New York, 1987).Google Scholar
22. Schaefer, D. W., Martin, J. E. and Hurd, A. J., in On Growth and Form, edited by Stanley, H. E. and Ostrowsky, N. (Martinus Nijhoff Publ., Boston, MA, 1986) p. 198.Google Scholar
23. Meakin, P., CRC Critical Reviews in Solid State and Materials Sciences 13, 143 (1987).Google Scholar
24. Keefer, K. D., MRS Bulletin, p. 29, Oct. I/Nov. 15, 1987.Google Scholar
25. Pietronero, L. and Tosatti, E., Eds., Fractals in Physics (North-Holland, Amsterdam, 1986).Google Scholar
26. Family, F. and Landau, D. P., Eds., Kinetics of Aggregation and Gelation (North-Holland, Amsterdam, 1984).Google Scholar
27. Abraham, F. F., Adv. in Phys. 35, 1 (1986).Google Scholar
28. Castillo, C. A., Rajagopalan, R. and Hirtzel, C. S., Rev. in Chem. Eng. 2, 248 (1984).Google Scholar
29. Rosenberg, R. O. and Thirumalai, D., Phys. Rev. A 35, 5390 (1987).Google Scholar
30. Robbins, M. O., Kremer, K., and Grest, G. S., J. Chem. Phys. 88, 3286 (1988).Google Scholar
31. Shih, W. Y., Aksay, I. A., and Kikuchi, R., J. Chem. Phys. 86, 5127 (1987).Google Scholar
32. Rajagopalan, R. and Hirtzel, C. S., Physics Reports, to appear.Google Scholar
33. Castillo, C. A., Equilibrium Structure of Interacting Colloidal Dispersions, Ph. D. Dissertation (Rensselaer Polytechnic Institute, Troy, NY, 1984).Google Scholar
34. Hirtzel, C. S. and Rajagopalan, R., in Micellar Solutions: Structure, Dynamics, and Statistica Thermodynamics, edited by Chen, S-H. and Rajagopalan, R. (Springer-Verlag, New York, NY, 1990).Google Scholar
35. Kim, H. and Rajagopalan, R., unpublished (1989).Google Scholar
36. Exner, H. E. in Reviews on Powder Metallurgy and Physical Ceramics, Vol. 1, edited by Lenel, F. (Freund Publishing House, Tel Aviv, Israel, 1979), p.7.Google Scholar
37. Madhavrao, L. and Rajagopalan, R., J. Mater. Res., in press (1989).Google Scholar