Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T05:03:59.060Z Has data issue: false hasContentIssue false

Structural Studies of La2−xBaxCuO4 Between 11–293 K

Published online by Cambridge University Press:  21 February 2011

D. E. Cox
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973
P. Zolliker
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973
J. D. Axe
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973
A. H. Moudden
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973
A. R. Moodenbaugh
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973
Y. Xu
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973
Get access

Abstract

Neutron powder diffraction data have been collected from samples of La1.9Ba0.1CuO4 and La1.85Ba0.15CuO4 in the temperature range 11–293 K. The first material undergoes a phase transition from the tetragonal K2NiF4-type structure (space group 14/mmm) to the orthorhombic La2CuO4-type structure (space group Bmab) at about 280 K, and then a second transition to another type of tetragonal (or near-tetragonal) structure with probable space group P42/ncm. The latter transition occurs predominantly between 50–40 K, but about 10% of the orthorhombic phase persists down to 15 K. Rietveld refinement was carried out at selected temperatures in the different structural regions. The differences among the low temperature structures can be cb acterized by tilting of the CuO6 octahedra about different rotation axes on the basis of the simple X-Y model previously proposed by Axe and coworkers. The tilt angle, which is a measure of the long-range order parameter, is about 3.5° at 15 K.

Data sets were also collected from La1.85Ba0.15CuO4 at 293, 90 and 11K. At the two latter temperatures there was some peak broadening consistent with the distortions observed in previous high resolution neutron [Paul and co-workers] and x-ray [Axe and co-workers] powder studies. Rietveld analysis of the data indicated the presence of local octahedral displacements, but it was not possible to determine the nature of the correlations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Bednorz, J. G. and Muller, K. A., Z. Phys. B 64, 189 (1986).Google Scholar
[2]. Moss, S. C., Forster, K., Axe, J. D., You, H., Hohlwein, D., Cox, D. E., Hor, P. H., Meng, R. L. and Chu, C. W., Phys. Rev. B 35, 7195 (1987).Google Scholar
[3]. Paul, D. Mc k, Balakrishnan, G., Bernhoeft, N. R., David, W. I. F. and Harrison, W. T. A., Phys. Rev. Lett. 58, 1976 (1987).Google Scholar
[4]. Birgeneau, R. J., Chen, C. Y., Gabbe, D. R., Jenssen, H. P., Kastner, M. A., Peters, C. J., Picone, P. J., Thio, T., Thurston, T. R., Tuller, H. L., Axe, J. D., Boni, P. and Shirane, G., Phys. Rev. Lett. 59, 1329 (1987).Google Scholar
[5]. Boni, P., Axe, J. D., Shirane, G., Birgeneau, R. J., Gabbe, D. R., Jenssen, H. P., Kastner, M. A., Peters, C. J., Picone, P. J. and Thurston, T. R., Phys. Rev. B 38, 185 (1988).Google Scholar
[6]. Axe, J. D., Cox, D. E., Mohanty, K., Mouddden, H., Moodenbaugh, A. R., Xu, Y. and Thurston, T. R., IBM J. Res. Devel. (in press).Google Scholar
[7] Axe, J. D., Moudden, A. H., Hohlwein, D., Cox, D. E., Mohanty, K. M., Moodenbaugh, A. R. and Xu, Y., Phys. Rev. Lett. (submitted).Google Scholar
[8]. Moodenbaugh, A. R., Xu, Y., Suenaga, M., Folkerts, T. J. and Shelton, R. N., Phys. Rev. B 38, 4596 (1988).Google Scholar
[9]. Sera, M., Ando, Y., Kondoh, S., Fukuda, K., Sato, M., Watanabe, I., Nakashima, S. and Kumagai, Y., Solid State Commun. 69, 851 (1989).Google Scholar
[10]. Kumagai, K., Nakamura, Y., Watanabe, I., Nakamichi, Y. and Nakajima, H., J. Mag. Magn. Mater. (in press).Google Scholar
[11]. Cox, D. E., Axe, J. D., Moudden, H., Mohanty, K. M. and Moodenbaugh, A. R., Amer. Cryst. Assn. Annual Meeting 16, 110 (1988).Google Scholar
[12]. Larson, A. C. and Dreele, R. B. Von, GSAS, Los Alamos National Laboratory Report LAUR 86–748 (1988).Google Scholar
[13]. Koester, L. and Yelon, W. B., “Neutron Cross Section Data”, Netherlands Energy Research Foundation, ECN, Petten (1983).Google Scholar
[14]. Scott, H. G., J. Appl. Cryst. 16, 159 (1983).Google Scholar
[15]. Jorgensen, J. D., Schuttler, H.-B., Hinks, D. G., Capone, D. W., Zhang, K., Brodsky, M. B. and Scalapino, D. J., Phys. Rev. Lett. 58, 1024 (1987).Google Scholar
[16]. Day, P., Rosseinsky, M., Prassides, K., David, W. I. F., Moze, O. and Soper, A., J. Phys. C, 20, 1429 (1987).Google Scholar
[17]. Egami, T., Dmowski, W., Jorgensen, J. D., Hinks, D. G., Capone, D. W., Segre, C. U. and Zhang, K., Inter. Conf. on Superconductivity, Drexel University (1987).Google Scholar
[18]. Yamada, K., Matsuda, M., Endoh, Y., Keimer, B., Birgeneau, R. J., Onodera, S., Misuzaki, J., Matsuura, T., and Shirane, G., Phys. Rev. B 39, 2336 (1989).Google Scholar
[19]. Rodriguez-Carvajal, J., Martinez, J. L., Pannetier, J. and Saez-Puche, R., Phys. Rev. B 38, 7148 (1988).Google Scholar
[20]. Lander, G., Brown, P. J., Honig, J. M. and Spalek, J., (private communication).Google Scholar