Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:05:30.295Z Has data issue: false hasContentIssue false

Structural Relaxation of Amorphous Silicon Induced by High Temperature Annealing

Published online by Cambridge University Press:  26 February 2011

L. De Wit
Affiliation:
FOM-Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
S. Roorda
Affiliation:
FOM-Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
W.C. Sinke
Affiliation:
FOM-Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
F.W. Saris
Affiliation:
FOM-Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
A.J.M. Berntsen
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P.O. Box 80000, NL-3508 TA Utrecht, The Netherlands
W.F. Van Der Weg
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P.O. Box 80000, NL-3508 TA Utrecht, The Netherlands
Get access

Extract

Structural relaxation of amorphous Si is studied in the temperature range 500-850 °C using Raman spectroscopy. The minumum value for the Raman peakwidth that can be obtained is inversely proportional to the anneal temperature. The relaxation process is basically the same in a-Si prepared by ion implantation and by vacuum evaporation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fredrickson, J.E., Waddell, C.N, Spitzer, W.G. and Hubler, G.K., Appl. Phys. Lett. 40, 172 (1982).CrossRefGoogle Scholar
2 Tsu, R., Gonzalez-Hernandez, J., and Pollak, F.H., J. Non-Cryst. Sol. 66, 109 (1984); Solid-State Comm. 54, 447 (1985).CrossRefGoogle Scholar
3 Roorda, S., Doom, S., Sinke, W.C., Scholte, P.M.L.O., and Loenen, E. van, Phys. Rev. Lett. 62, 1880 (1989).CrossRefGoogle Scholar
4 Polk, D.E. and Boudreaux, D.S., Phys. Rev.Lett. 31, 92 (1973).CrossRefGoogle Scholar
5 Roorda, S., Sinke, W.C., Poate, J.M., Jacobson, D.C., Dierker, S., Dennis, B.S., Eaglesham, D.J., Spaepen, F., and Fuoss, P., submitted to Phys. Rev. B.Google Scholar
6 Pantelides, S.T., Phys. Rev. Lett. 51, 2979 (1986).CrossRefGoogle Scholar
7 Biswas, R., Grest, G.S., and Soukoulis, C.M., Phys. Rev. B 36 7437 (1987).CrossRefGoogle Scholar
8 Sinke, W.C., Warabisako, T., Miyao, M, Tokuyama, T., Roorda, S., and Saris, F.W., J. Non Cryst. Sol., 99 308 (1988).CrossRefGoogle Scholar
9 Smith, J.E. Jr., Brodsky, M.H., Crowder, B.L., and Nathan, M. I., J. Non-Cryst. Sol. 8–10, 179 (1972).CrossRefGoogle Scholar
10 Alben, R., Weaire, D., Smith, J.E. Jr., and Brodsky, M.H., Phys. Rev. B 11, 2271 (1975).CrossRefGoogle Scholar
11 Beeman, D., Tsu, R., and Thorpe, M.F., Phys. Rev. B 32, 874 (1985).CrossRefGoogle Scholar
12 Wong, C.K. and Lucovsky, G., Mater. Res. Soc.Sym. Proc. 70, 77 (1986)CrossRefGoogle Scholar
13 Lannin, J.S., in Physics of Disordered Materials, edited by Adler, D., Fritzsche, H., and Ovshinsky, S.R. (Plenum Pess, New York, 1985 ), p. 175.CrossRefGoogle Scholar
14 Bean, J.C. and Poate, J.M., Appl. Phys. Lett. 36, 59 (1980).CrossRefGoogle Scholar
15 Olson, G.L. and Roth, J.A., Mater. Sci. Report 31, (1988); Mater. Res. Soc. Symp. Proc. 74, 319 (1987).Google Scholar
16 Roth, J.A., Olson, G.L., Jacobson, D.C., and Poate, J.M., Appl. Phys. Lett. 51, 1340 (1990).CrossRefGoogle Scholar
17 Corbett, J.W. and Bourgoin, J. C., in Point Defects in Solids, edited by Crawford, J.H., and Slifkin, L.M., (Plenum Press, New York 1975), p. 56.Google Scholar
18 Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A.G., and Chew, N.G., Phys. Rev. Lett. 52, 2360 (1984).CrossRefGoogle Scholar