Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:33:05.436Z Has data issue: false hasContentIssue false

Structural properties of Si nanoclusters produced by thermal annealing of SiOx films

Published online by Cambridge University Press:  15 March 2011

Simona Boninelli
Affiliation:
INFM-MATIS and Dipartimento di Fisica e Astronomia dell'Università di Catania, via SantaSofia 64, 95123 Catania, Italy
Fabio Iacona
Affiliation:
CNR-IMM, Sezione di Catania, Stradale Primosole 50, 95121 Catania, Italy
Corrado Bongiorno
Affiliation:
CNR-IMM, Sezione di Catania, Stradale Primosole 50, 95121 Catania, Italy
Corrado Spinella
Affiliation:
CNR-IMM, Sezione di Catania, Stradale Primosole 50, 95121 Catania, Italy
Francesco Priolo
Affiliation:
INFM-MATIS and Dipartimento di Fisica e Astronomia dell'Università di Catania, via SantaSofia 64, 95123 Catania, Italy
Get access

Abstract

The structural properties of Si nanoclusters embedded in SiO2, produced by high temperature annealing of SiOx films, have been investigated by energy filtered transmission electron microscopy. The presence of amorphous nanostructures, not detectable by using dark field transmission electron microscopy, has been demonstrated. By taking into account also this contribution, a quantitative description of the evolution of the samples upon thermal annealing has been accomplished. In particular, the nanocluster mean radius and the density of amorphous and crystalline clusters have been determined as a function of the annealing temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pavesi, L., Negro, L. Dal, Mazzoleni, C., Franzò, G., and Priolo, F., Nature 408, 440 (2000).Google Scholar
2. Khriachtchev, L., Rasanen, M., Novikov, S., and Sinkkonen, J., Appl. Phys. Lett. 79, 1249 (2001).Google Scholar
3. Luterova, K., Pelant, I., Mikulskas, I., Tomasiunas, R., Muller, D., Grob, J.-J., Rehspringer, J.-L., and Honerlage, B., J. Appl. Phys. 91, 2896 (2002).Google Scholar
4. Negro, L. Dal, Cazzanelli, M., Pavesi, L., Ossicini, S., Pacifici, D., Franzò, G., Priolo, F., and Iacona, F., Appl. Phys. Lett. 82, 4636 (2003).Google Scholar
5. Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P., and Fauchet, P.M., Nature 384, 338 (1996).Google Scholar
6. Lalic, N. and Linnros, J., J. Lumin. 80, 263 (1999).Google Scholar
7. Photopoulos, P. and Nassiopoulou, A.G., Appl. Phys. Lett. 77, 1816 (2000).Google Scholar
8. Franzò, G., Irrera, A., Moreira, E.C., Miritello, M., Iacona, F., Sanfilippo, D., Stefano, G. Di, Fallica, P.G., and Priolo, F., Appl. Phys. A: Mater. Sci. Process. 74, 1 (2002).Google Scholar
9. Irrera, A., Pacifici, D., Miritello, M., Franzò, G., Priolo, F., Iacona, F., Sanfilippo, D., Stefano, G. Di, and Fallica, P.G., Appl. Phys. Lett. 81, 1866 (2002).Google Scholar
10. Iacona, F., Franzò, G., and Spinella, C., J. Appl. Phys. 87, 1295 (2000).Google Scholar
11. Catalano, M., Kim, M.J., Carpenter, R.W., Chowdhury, K. Das, and Wong, J., J. Mater. Res. 8, 2893 (1993).Google Scholar
12. Philipp, H.R., J. Non-Cryst. Solids 8–10, 627 (1972).Google Scholar
13. Iacona, F., Bongiorno, C., Spinella, C., Boninelli, S., and Priolo, F., J. Appl. Phys. 95, 3723 (2004).Google Scholar