Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T18:24:09.688Z Has data issue: false hasContentIssue false

Structural Polysaccharides In Molecular Architecture of Plant Cell Wallsfrom Algae to Hardwoods

Published online by Cambridge University Press:  21 February 2011

R. H. Atalla
Affiliation:
USDA Forest Service, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53705-2398
J. M. Hackney
Affiliation:
USDA Forest Service, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53705-2398
Get access

Abstract

The structural polysaccharides are a family of polymers of hexoses and pentoses that occur in all plant cell walls. The distinguishing characteristic of these polymers is a β-1,4-linked backbone. The most common among these is cellulose, which is the linear homopolymer of anhydroglucose. These polysaccharides are capable of aggregating into highly ordered structures that are the primary determinants of the mechanical and physical properties of cell walls. An overview of the variations in patterns. of structural-polysaccharide aggregation within cell walls is presented here. Among the majority of the algae cellulose is the dominant structural polysaccharide; thus the habit of aggregation is dominated by the patterns of cellulose. Among primitive plants, other structural polysaccharides represent a larger fraction of cell-wall mass and cellulose is less dominant. In woody tissues of higher plants, structural polysaccharides are the major components of the cell wall, and the patterns of aggregation are again dominated by the characteristic habits of cellulose. Within tile phylogenetic framework, higher levels of morphological development apparently involve greater complexity in the molecular architecture of the cell walls and a finer level of blending of the components of aggregates at the molecular level.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Atalla, R.H., in Materials Interactions Relevant to the Pulp, Paper, and Wood Industries, edited by Caulfield, D.F., Passaretti, J.D., and Sobczynski, S.F., Pittsburgh, PA, (Mater. Res. Soc. Symp., 197, 1990. p. 89).Google Scholar
2. Atalla, R.H., in The Structures of Cellulose, edited by Atalla, R.H. (ACS Symp. Series 340, American Chemical Society, Washington, DC 1987).CrossRefGoogle Scholar
3. Jones, D.W. in Cellulose and Cellulose Derivatives, Part IV, edited by Bikales, N.M. and Segal, L., (Wiley-Interscience, New York, 1971), p. 117.Google Scholar
4. Ellefsen, O. and Tonessen, B.A., in Cellulose and Cellulose Derivatives, Part IV, edited by Bikales, N.M. and Segal, L., (Wiley-Interscience, New York, 1971, p. 151).Google Scholar
5. Marrinan, H.J. and Mann, J., J. Polymer Sci. 21, 301 (1956).CrossRefGoogle Scholar
6. French, A.D., Roughead, W.A., and Miller, D.P., in The Structures of Cellulose/bt, edited by Atalla, R.H., ACS Symposium Series 340, (American Chemical Society, Washington, DC, 1987).Google Scholar
7. Atalla, R.H., in Proceedings of the 8th Cellulose Conference, Appl. Polymer Symp. No. 28, p. 659, 1976.Google Scholar
8. Atalla, R.H., Advances in Chemistry Series 181, 55 (American Chemical Society, Washington, DC, 1979).Google Scholar
9. Atalla, R.H., in Proceedings: International Symposium on Wood and Pulping Chemistry, SPCI Rep. No 38, (Stockholm, 1981, Vol.1), p. 57.Google Scholar
10. Atalla, R.H., Cast, J.C., Sindorf, D.W., Bartuska, V.J., and Maciel, G.E., J. Am. Chem. Soc. 102, 3249 (1980).CrossRefGoogle Scholar
11. Wiley, J.H. and Atalla, R.H., in The Structures of Cellulose, edited by Atalla, R.H., ACS Symposium Series 340, (American Chemical Society, Washington, DC, 1987).Google Scholar
12. Atalla, R.H. and Vanderflart, D.L., in Cellulose and Wood: Chemistry and Technology: Proceedings: 10th Cellulose Conference, edited by Schuerch, C., (Wiley Interscience, New York, 1989), p. 169.Google Scholar
13. Earl, W.L. and VanderHart, D.L., J. Am. Chem. Soc. 102, 3251 (1980).CrossRefGoogle Scholar
14. Earl, W.L. and VanderHart, D.L., Macromol. 14, 570 (1981).CrossRefGoogle Scholar
15. Maciel, G.E., Kolodziejski, W.L., Bertran, M.S., and Dale, B.R., Macromnol. 15, 686 (1982).CrossRefGoogle Scholar
16. Fyfe, C.A., Dudley, R.L., Stephenson, P.J., Deslandes, Y., Hamer, G.K., and Marchessault, R.H., J. Am. Chem. Soc. 105, 2469 (1983).CrossRefGoogle Scholar
17. Atalla, R.H. and VanderHart, D.L., Sci. 223, 283 (1984).CrossRefGoogle Scholar
18. VanderHart, D.L. and Atalla, R.H., Macromol. 17, 1465 (1984).CrossRefGoogle Scholar
19. VanderHart, D.L. and Atalla, R.H., in The Structures of Cellulose, edited by Atalla, R. H., ACS Symposium Series 340, (American Chemical Society, Washington, DC, 1987).Google Scholar
20. Atalla, R.H., in Structure, Function and Biosynthesis of Plant Cell Walls, edited by Dugger, W.M. and Bartinicki-Garcia, S., (American Society of Plant Physiologists, Rockville, MD, 1984), p. 381.Google Scholar
21. Atalla, R.H., J. Appl. Polym. Sci. 37, 295 (1983).Google Scholar
22. Atalla, R.H., Ranua, J., and Malcolm, E.M., Tappi J. 67(2), 96 (1984).Google Scholar
23. Platt, W.N. and Atalla, R.H., in Proceedings: 1983 International Paper Physics Conference, (TAPPI Press, Atlanta, GA, 1983, p. 59).Google Scholar
24. Atalla, R.H., Ellis, J.D., and Schroeder, L.R., Wood Chem. Tech. 4, 465 (1984).CrossRefGoogle Scholar
25. Cronshaw, J., Myers, A., and Preston, R.D., Biochim. Biophys. Acta 27, 89 (1958).CrossRefGoogle Scholar
26. Browning, B.L., Methods of Wood Chemistry, Vol.2, (Wiley Interscience, New York, 1967).Google Scholar
27. Percival, E. and McDowell, R.H., Chemistry and Enzymology of Marine Algal Polysaccharides, (Academic Press, London, 1967).Google Scholar
28. Blackwell, J., Vasko, P.D., and Koenig, J.L., J. Appl. Phys. 41, 4375 (1970).CrossRefGoogle Scholar
29. Sporne, K.R., The Morphology of Pteridophytes: The Structure of Ferns and Allied Plants, (Hutchinson and Co., Ltd., London, 1966).Google Scholar
30. Raven, P.H., Evert, R.F., and Eichhorn, S.E., Biology of Plants, 4th ed., (Worth Publishers, Inc., New York, 1986).Google Scholar
31. Preston, R.D., Sci. Am. 218, 102 (1968).CrossRefGoogle Scholar
32. Ahtee, M., Paakkari, T., Puikkonen, K., and Hattula, T., Paperi ja Puu-Papper o. Tra 8, 475 (1980).Google Scholar
33. Hotchkiss, A.T. Jr., in Plant Cell Wall Polymers: Biogenesis and Biodegradation, edited by Lewis, N.G. and Paice, M.G., ACS Symposium Series 399, (American Chemical Society, Washington, DC, 1989, p. 232).CrossRefGoogle Scholar
34. Kuga, S. and Brown, R.M. Jr., in Biosynthesis and Biodegradation of Cellulose, edited by Haigler, C.H. and Weimer, P.J., (Marcel Dekker, Inc., New York, 1991, p. 125).Google Scholar
35. Painter, T.J., Pure and Appl. Chem. 55, 677 (1983).CrossRefGoogle Scholar
36. Painter, T.J., in The Polysaccharides, Vol.2, edited by Aspinall, G.O., (Academic Press, New York, 1983, p. 195).CrossRefGoogle Scholar
37. Fengel, D. and Wegener, G., Wood: Chemistry, Ultrastructure, Reactions, (Walter de Gruyter and Co., Berlin, 1984).Google Scholar