Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T08:50:59.127Z Has data issue: false hasContentIssue false

Structural Phase Transformations in V2O5 Thin Film Cathode Material for Li Rechargeable Batteries

Published online by Cambridge University Press:  10 February 2011

J. M. McGraw
Affiliation:
Colorado School of Mines, Golden, CO, USA
J. D. Perkins
Affiliation:
National Renewable Energy Laboratory, Golden, CO, USA
J.-G. Zhang
Affiliation:
National Renewable Energy Laboratory, Golden, CO, USA
P. A. Parilla
Affiliation:
National Renewable Energy Laboratory, Golden, CO, USA
T. F. Ciszek
Affiliation:
National Renewable Energy Laboratory, Golden, CO, USA
M. L. Fu
Affiliation:
University of Colorado, Boulder, CO, USA
D. M. Trickett
Affiliation:
Colorado School of Mines, Golden, CO, USA
J. A. Turner
Affiliation:
National Renewable Energy Laboratory, Golden, CO, USA
D. S. Ginley
Affiliation:
National Renewable Energy Laboratory, Golden, CO, USA
Get access

Abstract

We report on investigations of V2O5 thin film cathodes prepared by pulsed laser deposition and the phase transformations which occur during electrochemical cycling. Our experimental results on PLD-grown, textured V2O5 crystalline films concur with reports in the literature that there is a voltage threshold above which, cycling appears to be completely reversible and below which, cycling appears to be irreversible. Crystalline films discharged beyond the threshold to 2.0 V vs. Li exhibited an immediate and continuous fade in capacity as well as a ∼90% decrease in XRD peak intensity and a similar decrease in Raman signal intensity in as few as 10 cycles. We have made co-phase material by both electrochemically discharging virgin, crystalline V2O5 and by further discharging previously cycled films which showed irreversible structural changes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Whittingham, M. S., J. Electrochem. Soc. 315 (1976).10.1149/1.2132817Google Scholar
2. Bachmann, H. G., Ahmed, F. R. and Barnes, W. H., Kristallogr, Z.., Kristallgeom., Kristallphys., Kristallchem. 115, 110 (1961).10.1524/zkri.1961.115.1-2.110Google Scholar
3. Byström, A., Wilhelmi, K. A. and Brotzen, O., Acta Chem. Scand. 4, 1119 (1950).10.3891/acta.chem.scand.04-1119Google Scholar
4. Cava, R. J., Santoro, A., Murphy, D. W., Zahurak, S. M., Fleming, R. M., Marsh, P. and Roth, R. S., J. Solid State Chem. 65, 63 (1986).10.1016/0022-4596(86)90089-7Google Scholar
5. Cocciantelli, J. M., Gravereau, P., Doumerc, J. P., Pouchard, M. and Hagenmuller, P., J. Solid State Chem. 93, 497 (1991).Google Scholar
6. Delmas, C., Bréthes, S. and Ménétrier, M., J. Power Sources 34, 113 (1991).10.1016/0378-7753(91)85030-ZGoogle Scholar
7. Dickens, P. G., French, S. J., Hight, A. T. and Pye, M. F., Mat. Res. Bull. 14, 1295 (1979).Google Scholar
8. Murphy, D. W., Christian, P. A., DiSalvo, F. J. and Waszczak, J. V., Inorg. Chem. 18, 2800 (1979).Google Scholar
9. Pecquenard, B., Gourier, D. and Baffier, N., Solid State Ionics 78, 287 (1995).10.1016/0167-2738(95)00099-RGoogle Scholar
10. Shimizu, A., Tsumura, T. and Inagaki, M., Solid State Ionics 63–65, 479 (1993).10.1016/0167-2738(93)90147-UGoogle Scholar
11. Delmas, C., Cognac-Auradou, H., Cocciantelli, J. M., Ménétrier, M. and Doumerc, J. P., Solid State Ionics 69, 257 (1994).10.1016/0167-2738(94)90414-6Google Scholar