Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T23:20:51.205Z Has data issue: false hasContentIssue false

Structural, Optical and Electrical Characterization of Thermally Evaporated TlBr Thin Films

Published online by Cambridge University Press:  31 January 2011

Natália Destefano
Affiliation:
[email protected], University of São Paulo, Department of Physics and Mathematics, Ribeirão Preto, Sao Paulo, Brazil
Marcelo Mulato
Affiliation:
[email protected], University of São Paulo, Department of Physics and Mathematics, Ribeirão Preto, Sao Paulo, Brazil
Get access

Abstract

This paper presents the study related to the production of TlBr thin films. Films produced by thermal evaporation present better structural properties than those produced by spray pyrolysis. The main XRD peak of the evaporated films correspond to the (100) plane, whose structure is columnar as revealed by cross section SEM. The thickness decreases with increasing deposition height. Optical band gap of 3.0 eV and electrical resistivities about 109 Ωcm were obtained. EDS reveals a reduction in the amount of Br in the final films. One order of magnitude was obtained for the photo-to-dark current ratio when irradiation in the medical diagnosis X-ray mammography energy range was used.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sellin, P.J. Nuclear Instruments and Methods in Physics Research A 563, 1, 2006 Google Scholar
2. Sellin, P.J. Nuclear Instruments and Methods in Physics Research A 513, 332, 2003 Google Scholar
3. Owens, A. and Peacock, A. Nuclear Instruments and Methods in Physics Research A 531, 18. 2004 Google Scholar
4. Hitomi, K. Muroi, O. Matsumoto, M. Hirabuki, R. Shoji, T. Suehiro, T. Hiratate, Y. Nuclear Instruments and Methods in Physics Research A 458, 365369, 2001 Google Scholar
5. Onodera, T. Hitomi, K. Shoji, T. Nuclear Instruments and Methods in Physics Research A 568, 433436, 2006 Google Scholar
6. Onodera, T. Hitomi, K. Shoji, T. Hiratate, Y. Kitaguchi, H. IEEE Transactions on Nuclear Science 52, 19992002, 2005 Google Scholar
7. Hitomi, K. Matsumoto, M. Muroi, O. Shoji, T. and Hiratate, Y. J. Crystal Growth, 225, 129133, 2001 Google Scholar
8. Hitomi, K. 0. Muroi, Matsumoto, M. Hirabuki, R. Shoji, T. Hiratate, Y. IEEE Transactions on Nuclear Science 47,777779, 2000 Google Scholar
9. Owens, Alan, Bavdaz, M. Brammertz, G. Gostilo, V. Graafsma, H. Kozorezov, A. Krumrey, M. Lisjutin, I. Peacock, A. Puig, A. Sipila, H. Zatoloka, S. Nuclear Instruments and Methods in Physics Research A 497, 370380, 2003 Google Scholar
10. Costa, Fábio E. da, Rela, Paulo R. Oliveira, Icimone B. de, Pereira, Maria C. C., Hamada, Margarida M. IEEE Transactions on Nuclear Science 53, 14031407, 2006 Google Scholar
11. Owens, A. Bavdaz, M. Brammertz, G. Gostilo, V. Haack, N. Kozorezov, A. Lisjutin, I. Peacock, A., Zatoloka, S. Nuclear Instruments and Methods in Physics Research A 497, 359369, 2003 Google Scholar
12. Onodera, T. Hitomi, K. Shoji, T. Hiratate, Y. Nuclear Instruments and Methods in Physics Research A 525, 199204, 2004 Google Scholar
13. Hitomi, K. Muroi, O. Shoji, T. Hiratate, Y. Ishibashi, H. Ishii, M. Nuclear Instruments and Methods in Physics Research A 448, 571575, 2000 Google Scholar
14. Hitomi, K. Matsumoto, M. Muroi, O. Shoji, T. Hiratate, Y. IEEE Transactions on Nuclear Science 49, 25262529, 2002 Google Scholar
15. Bennett, P.R. Shah, K.S. Cirignano, L.J. Klugerman, M.B. Moy, L.P. Olschner, F. Squillante, M.R. IEEE Transactions on Nuclear Science, 46, 266270, 1998 Google Scholar
16. Ponpon, J.P. Nuclear Instruments and Methods in Physics Research A 551 2526, 2005 Google Scholar