Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:36:30.295Z Has data issue: false hasContentIssue false

Structural, Magnetic, and Electrical Properties of BiFe1-xMnxO3 Thin Films

Published online by Cambridge University Press:  31 January 2011

Danilo G Barrionuevo
Affiliation:
Surinder P Singh
Affiliation:
[email protected], Mayaguez, Puerto Rico
Maharaj S. Tomar
Affiliation:
[email protected], University of Puerto Rico, Department of Physics, Mayaguez, Puerto Rico
Get access

Abstract

We synthesized BiFe1-xMnxO3 (BFMO) for various compositions by sol gel process and thin films were deposited by spin coating on platinum Pt/Ti/SiO2/Si substrates. X-ray diffraction shows all the diffraction planes corresponding to rhombohedrally distorted perovskite BiFeO3 structure. The absence of any impurity phase in the films suggests the incorporation Mn ion preferentially to Fe site in the structure for low concentration. Magnetic measurements reveal the formation of ferromagnetic phase at room temperature with increased Mn substitution. On the other hand, ferroelectric polarization decreases with increasing Mn ion concentration. Raman studies suggest the dopant induced structural distortion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Salje, E., Phase Transitions in Ferroelastic and Co-elastic Crystals (Cambridge Univ. Press, Cambridge (1990).Google Scholar
2 Smolenskii, G., Chupis, I., Sov. Phys. Usp. 25, 475 (1982).Google Scholar
3 Wang, J., Neaton, J., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D. G., Waghmare, U.V., Spaldin, N. A., Rabe, K. M., Wuttig, M., Ramesh, R., Science 299 1719 (2003).Google Scholar
4 Hur, N., Park, S., Sharma, P., Ahn, J., Guha, S., and Cheong, S., Nature 429, 392 (2004).Google Scholar
5 Dong, S., Zhai, J., Li, J., Viehland, D., and Bichuri, M., Appl. Phys. Lett. 89 243512 (2006).Google Scholar
6 Zhao, T., Scholl, A., Zavaliche, F., Lee, K., Barry, M., Doran, A., Cruz, M. P., Chu, Y. H., Ederer, C., Spaldin, N. A., Das, R. R., Kim, D. M., Baek, S. H., Eom, C. B. and Ramesh, R., Nature Materials 5, 823 (2006).Google Scholar
7 Smolenskii, G. and Chupis, I.E., Sov. Phys.—Usp. 25, 475 (1982).Google Scholar
8 Palker, V., John, J. and Pinto, R., Appl. Phys. Lett. 80 1628 (2002).Google Scholar
9 Kharel, P., Kharell, P., Talebi, S., Ramachandran, B., Dixit, A., Naik, V., Sahana, M., Sudakar, C., Naik, R Rao, M. and Lawes, G., J. Phys. Condensed Matter 21, 036001 (2009).Google Scholar
10 Cheng, Z., Wang, X., Dou, S.X, Kimura, H., and Ozawa, K., Phys. Rev. B 77 092101 (2008).Google Scholar
11 Hermet, P., Goffinet, M., Kreisel, J., and Ghosez, P.,. Phys. Rev. B 75, 220102, (2007).Google Scholar