Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:50:12.244Z Has data issue: false hasContentIssue false

Structural Isomers of C70

Published online by Cambridge University Press:  25 February 2011

Krishnan Raghavachari*
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Alternative isomeric structures of C70 have been investigated using semiempirical and ab initio quantum chemical techniques. As in the case of C60, these isomers are characterized by the presence of pentagonal rings adjacent to each other. The lowest energy alternative isomer of C70 has only one pair of edge-sharing pentagons and lies ≈ 1.4 eV higher in energy than the ground state. This energy difference is smaller than that for the lowest energy alternative isomer of C60 which contains two pairs of adjacent pentagons and lies ≈ 2.0 eV higher in energy than its ground state.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Krditschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., Nature 347, 354 (1990).CrossRefGoogle Scholar
2. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., Nature 318, 162 (1985).CrossRefGoogle Scholar
3. Kroto, H. W., Nature 329, 529 (1987).CrossRefGoogle Scholar
4. Schmalz, T. G., Seitz, W. A., Klein, D. J., and Hite, G. E., J. Am. Chem. Soc. 110, 1113 (1988).Google Scholar
5. Raghavachari, K. and Rohlfing, C. M., J. Phys. Chem. 96, 2463 (1992).Google Scholar
6. Raghavachari, K. and Rohlfing, C. M., Mat. Res. Soc. Symp. Proc. (1991).Google Scholar
7. Stone, A. J. and Wales, D. J., Chem. Phys. Lett. 128, 501 (1986).Google Scholar
8. Density functional calculations obtain a similar value of 1.6 eV. J. Bernholc (private communication).Google Scholar
9. Raghavachari, K. and Rohlfing, C. M., J. Phys. Chem. 95, 5768 (1991).Google Scholar
10. Scuseria, G. E., Chem. Phys. Lett. 180, 451 (1991).Google Scholar
11. Howard, J. B., McKinnon, J. T., Makarovsky, Y., Lafleur, A. L., and Johnson, M. E., Nature 352, 139 (1991).CrossRefGoogle Scholar
12. Anacleto, J. F., Perreault, H., Boyd, R. K., Pleasance, S., Quilliam, M. A., Sim, P. G., Howard, J. B., Makarovsky, Y., and Lafleur, A. L., Rapid Comm. in Mass Spect. 6, 214 (1992).CrossRefGoogle Scholar
13. Dewar, M. J. S. and Thiel, W., J. Am. Chem. Soc. 99, 4899 (1977).Google Scholar
14. Hehre, W. J., Radom, L., Schleyer, P. v. R., and Pople, J. A., Ab Initio Molecular Orbital Theory (John Wiley, New York, 1986).Google Scholar
15. All the calculations reported in this work were performed using Gaussian 90 Computer Program, Frisch, M. J., Head-Gordon, M., Trucks, G. W., Foresman, J. B., Schlegel, H. B., Raghavachari, K., Robb, M., Binkley, J. S., Gonzalez, C., Defrees, D. J., Fox, D. J., Whiteside, R. A., Seeger, R., Melius, C. F., Baker, J., Martin, R. L., Kahn, L. R., Stewart, J. J. P., Topiol, S., and Pople, J. A., Gaussian, Inc., Pittsburgh PA, 1990.Google Scholar
16. Haddon, R. C. and Scott, L. T., Pure Appl. Chem. 58, 137 (1986).Google Scholar
17. Haddon, R. C., J. Am. Chem. Soc. 112, 3385 (1990).CrossRefGoogle Scholar