Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:23:20.547Z Has data issue: false hasContentIssue false

Structural Investigations on Scandium Substituted Nasicons. Order Disorder Effects

Published online by Cambridge University Press:  21 February 2011

A. Clearfield
Affiliation:
Department of Chemistry, Texas A&M University, College Station, TX 77843
P.G. Hinson
Affiliation:
Department of Chemistry, Texas A&M University, College Station, TX 77843
P.R. Rudolf
Affiliation:
Department of Chemistry, Texas A&M University, College Station, TX 77843
P.J. Squattrito
Affiliation:
Department of Chemistry, Texas A&M University, College Station, TX 77843
Get access

Abstract

Neutron diffraction data were used to refine the structures of three scandium substituted NASICONS: Na2 ZrSc(PO4)3, R3c Na2.5 Zr1.8 Sc0.2 Si1.7 O12 R3c and Na2.7. Zr1.0 Sc0.2Si1.5 P1.5O12, C2/c. The phosphate (compound 1) exhibited oxygen disorder. The second compound exhibited a similar type of oxygen disorder but also an interstitial Na+ position. The oxygen disorder in compound 2 apparently results from the position of the interstitial Nae whereas it is suggested that the Sc site in Na2 ZrSC(PO4)3 is slightly removed from that of the Zr position, requiring a shift of phosphate groups. In contrast the monoclinic phase does not exhibit oxygen disorder and all the sodium ions reside within the cavities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Goodenough, J. B., Hong, H. Y.-P. and Kafalas, J. A., Mater. Res. Bull. 11, 204(1976).Google Scholar
2. Hong, H. Y.-P., Mater. Res. Bull. 11, 173 (1976).Google Scholar
3. Clearfield, A., Subramanian, M. A., Wang, W. and Jerus, P., Solid State lonics 9/10, 895(1983).CrossRefGoogle Scholar
4. Rudolf, P. R., Subramanian, M. A., Clearfield, A. and Jorgensen, J. D., Mater. Res. Bull. 20, 643(1985); Solid State lonics 21 1137 (1986).Google Scholar
5. Kohler, H. and Schulz, H., Solid State lonics 9/10, 795(1983).CrossRefGoogle Scholar
6. Kohler, H. and Schulz, H., Mater. Res. Bull. 20, 1461 (1985).Google Scholar
7. Clearfield, A., Subramanian, M. A., Rudolf, P. R. and Moini, A., Solid State Ionics 18/19, 13(1986).CrossRefGoogle Scholar
8. Rudolf, P. R., Clearfield, A. and Jorgensen, J. D., Solid State lonics 21, 213 (1986).CrossRefGoogle Scholar
9. Kohler, H. and Schulz, H., Mater. Res. Bull. 2.1, 23(1986).Google Scholar
10. Boilot, J. P., Collin, G. and Colomban, Ph., Mater. Res. Bull. 22, 669 (1987).Google Scholar
11. Boilot, J. P., Collin, G. and Colomban, Ph., 3. Solid State chem. 73, 160 (1988).Google Scholar
12. Subramanian, M. A., Rudolf, P. R. and Clearfield, A., J. Solid State Chem. 60, 172 (1985).Google Scholar
13. Clearfield, A. and Pack, S. P., J. Inorg. Nucl. Chem. 13, 2880 (1974).Google Scholar
14. Dreele, R. B. Von, Jorgensen, J. D. and Windor, C. G., J. Appl. Cryst. 15, 581 (1982).Google Scholar
15. Squattrito, P. J., Rudolf, P. R., Hinson, P. G., Clearfield, A., Volin, K. and Jorgensen, J. D., Solid State Ionics, in press.Google Scholar
16. Hagman, L. and Kierkegaard, P., Acta Chem. Scand. 22, 1822 (1968).Google Scholar
17. McCullough, J. D. and Trueblood, K. N., Acta Crystallogr. 12, 507 (1959).Google Scholar
18. Baur, W. H., Dygas, J. R., Whitmore, D. H. and Faber, J., Solid State Ionics 18/19, 935(1986).Google Scholar
19. Sizova, R. G., Blinov, V. A., Kuznetsov, V. A., Voronkov, A. A., Ilyukin, V. V. and Belov, N. V., Soy. Phys. Dokl. 23, 103 (1978).Google Scholar
20. Shioler, L. J., Ph.D. Dissertation, Massachusetts Institute of Technology, Feb. 1983.Google Scholar
21. Colomban, Ph., Solid State lonics 21, 97 (1986).Google Scholar
22. Moini, A. and Clearfield, A., Adv. Ceram. Mat. 2, 173 (1987).Google Scholar