Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:23:16.542Z Has data issue: false hasContentIssue false

Structural investigation of InAs/InGaAs/InP nanostructures: origin and stability of nanowires.

Published online by Cambridge University Press:  26 February 2011

L. Nieto
Affiliation:
Instituto de Física Gleb Wataghin, DFA/LPD, UNICAMP, CP 6165, 13081–970 Campinas-São Paulo, Brazil
H. R. Gutiérrez
Affiliation:
Department of Physics, The Pennsylvania State University, 104 Davey Laboratory, University Park, PA 16802–6300, USA
J. R. R. Bortoleto
Affiliation:
Instituto de Física Gleb Wataghin, DFA/LPD, UNICAMP, CP 6165, 13081–970 Campinas-São Paulo, Brazil
R. Magalhães-Paniago
Affiliation:
Departamento de Física, UFMG, CP 702, CEP 30123–970, Belo Horizonte, Minas Gerais, Brazil
M. A. Cotta
Affiliation:
Instituto de Física Gleb Wataghin, DFA/LPD, UNICAMP, CP 6165, 13081–970 Campinas-São Paulo, Brazil
Get access

Abstract

In this letter we present results on the growth of InAs nanowires (NW's) on InGaAs lattice-matched to (100) InP substrates by Chemical Beam Epitaxy. We observed that the nanostructure stability depends on the thickness of the InGaAs layer. This effect may result from two different conditions: the nanostructure strain field depth and/or compositional modulation in the buffer layer. Our investigation shows that anisotropic strain relaxation for nanowires grown on InGaAs is faster than for those grown on InP but the elastic energy in the nanostructures is no different from the InAs/InP case. These results suggest that the InAs strain relaxation does not depend significantly on the InGaAs buffer layer thickness. Nevertheless, transmission electron microscopy images show an additional stress field superimposed on that usually observed for the InAs nanostructures, which is attributed to compositional modulation in the ternary layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mendonça, C.A.C., Cotta, M.A., Meneses, E.A. and Carvalho, M.M.G. Phys.Rev. B 57, 12501 (1998).Google Scholar
2. Gonzalez, L., Garcia, J.M., Garcia, R., Briones, F., Martinez-Pastor, J. and Ballesteros, C.. Appl. Phys. Lett. 76, 1104 (2000).Google Scholar
3. Walther, C., Hoerstel, W., Niehus, H., Erxmeyer, J. and Masselink, W.T.. J. Cryst. Growth 209, 572 (2000).Google Scholar
4. Wu, J., Zeng, Y.P., Sun, Z.Z., Lin, F., Xu, B. and Wang, Z.G.. J. Cryst. Growth 219, 180 (2000).Google Scholar
5. Gutierrez, HR, Magalhaes-Paniago, R, Bortoleto, JRR, et al., APPLIED PHYSICS LETTERS 85 (16): 35813583 OCT 18 2004 Google Scholar
6. Brault, J., Gendry, M., Grenet, G. and Hollinger, G.. Appl. Phys. Lett. 73, 2932 (1998).Google Scholar
7. Tsao, J.Y., Materials Fundamentals of Molecular Beam Epitaxy (Academic Press, Inc., Boston, 1993)Google Scholar
8. Ogasawara, M, JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS 42 (10): 62696275 (2003).Google Scholar
9. Gutierrez, M, Herrera, M, Ross, I, et al. INSTITUTE OF PHYSICS CONFERENCE SERIES (180): 143146 (2003).Google Scholar
10. Bortoleto, JRR, Gutierrez, HR, Cotta, MA, APPLIED PHYSICS LETTERS 82 (20): 35233525 MAY 19 2003 Google Scholar