Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:29:24.257Z Has data issue: false hasContentIssue false

Structural evaluation in Zr15Al5Ni57Y23bulk metallic glass under high pressure

Published online by Cambridge University Press:  01 February 2011

Gong Li
Affiliation:
[email protected], Yanshan University, Key Lab of Metastable Materials Mater Science &Technology, 438,Hebei Avenue,, Qinhuangdao, 066004, China, People's Republic of
Yunpeng Gao
Affiliation:
[email protected], Yanshan University, Qinhuangdao, 066004, China, People's Republic of
Tao Xu
Affiliation:
[email protected], Yanshan University, Qinhuangdao, 066004, China, People's Republic of
Qin Jing
Affiliation:
[email protected], Yanshan University, Qinhuangdao, 066004, China, People's Republic of
Jing Liu
Affiliation:
[email protected], Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100039, China, People's Republic of
Riping Liu
Affiliation:
[email protected], Yanshan University, Qinhuangdao, 066004, China, People's Republic of
Get access

Abstract

The compression behavior of Zr15Al5Ni57Y23 bulk metallic glass is investigated at room temperature using in-situ high pressure energy dispersive X-ray diffraction with a synchrotron radiation source. The structural information of the atomic configuration about Zr15Al5Ni57Y23 bulk amorphous alloy such as coordination number (CN), neighbor atomic distance is gained by Fourier transformation under different pressure. The investigation shows that the structure of Zr15Al5Ni57Y23 bulk metallic glass is stable under the pressure ranging from zero to 31.7 GPa, but the degree of short-range order changes by the pressure altering the second and the third nearest neighbor local atomic configuration of the amorphous alloy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nishiyama, N., and Inoue, A., Mater. Trans. JIM. 37, 181(1996).Google Scholar
2. Meyer, A., Phys. Rev. Lett. 83, 5027 (1999).Google Scholar
3. Ruitenberg, G., Phys. Rev. Lett. 79, 4830 (1997).Google Scholar
4. Chen, H. S., Rep. Prog. Phys. 43, 353 (1980).Google Scholar
5. Bridgman, P. W., “The Physics of High Pressure,” (London: G. Bell and Sons, 1931).pp.113118.Google Scholar
6. Greer, A. L., J. Non-cryst. Solids, 61&62, 737(1984).Google Scholar
7. Li, G., Wang, Y. Q., Gao, Y. P., Zhang, R. J., Zhan, Z. J., Sun, L. L., Zhang, J., and Wang, W. K., J. Mater. Res. 17, 1877(2002).Google Scholar
8. Li, G., Zhan, Z. J., Wang, L. M., Sun, L.L., Liu, J., and Wang, W. K., Chin. Phys. Lett. 21, 898 (2004).Google Scholar
9. Li, G., Gao, Y. P., Sun, Y. N., Liu, J., and Liu, R. P., Chin. Sci. Bull. 17, 1995 (2006).Google Scholar
10. Yang, L., Chao, Y., Saksl, K., Franz, H., Sun, L. L., Wang, W. K., Jiang, N. P., Wu, X. J., and Jiang, J. Z., Appl. Phys. Lett., 84, 4998(2004).Google Scholar
11. Sun, L. L., Wang, W. K., Wang, L. M., Kikegawa, T., Wu, Q., Zhang, J., C.Fan, Eckert, J. and Schultz, L., Phys. Rev. B. 68, 052302 (2003).Google Scholar
12. Murnaghan, F. D., “Finite Deformation of an Elastic Solid,” (New York: John Wiley & Sons, 1951) pp.544550.Google Scholar
13. Ruitenberg, G., Hey, P. D., Sommer, F. and Sietsma, J., Phys. Rev. Lett. 79, 4830 (1997).Google Scholar
14. Wang, LiMin, Li, G., Zhan, Z. J., Sun, L. L., and Wang, W. K., Phil. Mag. Lett. 81, 419 (2001).Google Scholar