Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-08T10:26:29.500Z Has data issue: false hasContentIssue false

Structural Effect of Pu Substitutions on the Zr-Site in Zirconolite

Published online by Cambridge University Press:  21 March 2011

B.D. Begg
Affiliation:
Materials Division, ANSTO, PMB 1, Menai, NSW, 2234, Australia. Email: [email protected]
R.A. Day
Affiliation:
Materials Division, ANSTO, PMB 1, Menai, NSW, 2234, Australia. Email: [email protected]
A. Brownscombe
Affiliation:
Materials Division, ANSTO, PMB 1, Menai, NSW, 2234, Australia. Email: [email protected]
Get access

Abstract

As the level of Pu4+ substituted on the Zr-site in CaZr1-xPuxTi2O7 zirconolite increased, from x=0.1 to 0.6, a series of structural transitions occurred from zirconolite-2M to zirconolite-4M and subsequently from zirconolite-4M to pyrochlore. The solid-solution limit for Pu4+ substituted on the Zr-site in zirconolite-2M was ~ 0.15 formula units. Zirconolite-4M was only stable over a narrow compositional range, centered about CaZr0.59Pu0.41Ti2O7, whilst the pyrochlore structure was stabilized with CaZr0.4Pu0.6Ti2O7 stoichiometry. The stability of the zirconolite polytypes is therefore sensitive to the average effective ionic size of the ions occupying the seven-coordinated Zr-site. The reduction in Pu from Pu4+ to Pu3+ destabilized the zirconolite-4M, producing a mixture of perovskite and possibly zirconolite-3T. The CaZr0.4Pu0.6Ti2O7 pyrochlore was also predominantly transformed to perovskite as a result of this reduction of Pu.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Myers, B.R., Armantrout, G.A., Jantzen, C.M., Jostsons, A., McKibben, J.M., Shaw, H.F., Strachan, D.M. and Vienna, J.D., Technical Evaluation Panel Summary Report, Plutonium Immobilization Project, Report No. UCRL-ID-129315, 1998.Google Scholar
2. Ringwood, A.E., Kesson, S.E., Reeve, K.D., Levins, D.M. and Ramm, E.J., in: Lutze, W. and Ewing, R.C. (Eds.), Radioactive Waste Forms for the Future, North-Holland, Amsterdam, 1988, p. 233Google Scholar
3. Lumpkin, G.R., Hart, K.P., McGlinn, P.J., Payne, T.E., RGiere, . and Williams, C.T., Radiochim. Acta 66/67 469–74 (1994)Google Scholar
4. Rossell, H.J., Nature, 283, 282–83 (1980)Google Scholar
5. Gatehouse, B.M., Grey, I.E., Hill, R.J. and Rossell, H.J., Acta Cryst. Sect. B7, 306 ((1981)Google Scholar
6. Begg, B.D. and Vance, E.R., Mat. Res. Soc. Symp. Proc. Vol.465, 333–40 (1997).Google Scholar
7. Begg, B.D., Vance, E.R., Day, R.A., Hambley, M. and Conradson, S.D., Mat. Res. Soc. Symp. Proc. Vol.465, 325–32 (1997).Google Scholar
8. Vance, E. R., Lumpkin, G. R., Carter, M. L., Ball, C. J. andBegg, B. D., submitted to J. Am. Ceram. Soc.Google Scholar
9. Coelho, A.A., Cheary, R.W. and Smith, K.L., J. Solid State Chem. 129, 346359 (1997).Google Scholar
10. Clinard, F.W.,Jr., Hobbs, L.W., Land, C.C., Peterson, D.E., Rohr, D.L. and Roof, R.B., J. Nucl. Mater., 105 248256 (1982).Google Scholar
11. Clinard, F.W., Jr., Land, C.C., Peterson, D.E., Rohr, D.L. and Roof, R.B., in Scientific Basis for Nuclear Waste Management, ed., Topp, S.V. (North-Holland, New York, 1982) p 405.Google Scholar
12. Begg, B.D., Vance, E.R., Hunter, B.A. and Hanna, J.V., J. Mater. Res. 13(11) 3181–90 (1998).Google Scholar
13. Shannon, R.D., Acta Cryst. A32, 751 ((1976).Google Scholar
14. Bayliss, P., Mazzi, F., Munno, R. and White, T.J., Mineral. Mag. 53 565–69 (1989).Google Scholar
15. Subramanian, M.A., Aravamudan, G. and Rao, G.V. Subba, Prog. Solid St. Chem. 15 55143 (1983).Google Scholar