Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T09:23:42.401Z Has data issue: false hasContentIssue false

Structural Defects in GaN-based Materials and Their Relation to GaN-based Laser Diodes

Published online by Cambridge University Press:  31 January 2011

Shigetaka Tomiya
Affiliation:
[email protected]@ca2.so-net.ne.jp, Sony Corporation, Advanced Materials Laboratories, Atsugi, Japan
Masao Ikeda
Affiliation:
[email protected], Sony Corporation, Advanced Materials Laboratories, Atsugi, Kanagawa, Japan
Shinji Tanaka
Affiliation:
[email protected], Sony Corporation, Advanced Materials Laboratories, Atsugi, Kanagawa, Japan
Yuya Kanitani
Affiliation:
[email protected], Sony Corporation, Advanced Materials Laboratories, Atsugi, Kanagawa, Japan
Tadakatsu Ohkubo
Affiliation:
[email protected], National Institute for Materials Science, Tsukuba, Japan
Kazuhiro Hono
Affiliation:
[email protected], National Institute for Materials Science, Tsukuba, Japan
Get access

Abstract

Reduction of structural defects in III-nitride based optical devices is of critical importance for high efficient and high reliable optoelectronic performance. Here, three different types of structural defects such as threading dislocations, Mg-related pyramidal defects and columnar defects, observed in GaN-related epitaxial films are described and their relation to reliability of GaN-based LDs is discussed. Composition fluctuations of GaInN MQWs with different In concentrations by analyzed by a laser assisted 3D atom probe are also described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., et al., Appl. Phys. Lett., 70, 868 (1997).10.1063/1.118300Google Scholar
2. Morkoc, H., Nitride Semiconductors and Devices (Springer, Berlin, 1999).10.1007/978-3-642-58562-3Google Scholar
3. Ueda, O., Reliability and Degradation of III-V Optical Devices (Boston, MA: Artech, 1996).Google Scholar
4. Zheleva, T. S., et al., J. Electron. Mater., 28, L6 (1999).10.1007/s11664-999-0239-zGoogle Scholar
5. Tomiya, S., et l., IEEE J. Quantum Electron., 10, 1277 (2004).10.1109/JSTQE.2004.837735Google Scholar
6. Petroff, P. M., Semiconductor and Insulators, 5, 307 (1983).Google Scholar
7. Ueda, O., OYO BUTURI, 78, 316 (2009) in Japanese.Google Scholar
8. Liliental-Weber, Z., et al., Appl. Phys. Lett., 75, 4159 (1999).10.1063/1.125568Google Scholar
9. Vennéguès, P., et al., Appl. Phys. Lett., 77, 880. (2000).10.1063/1.1306421Google Scholar
10. Tomiya, S., Goto, S., Takeya, M. and Ikeda, M., Mat. Res. Symp. Proc., 743, 839 (2003).Google Scholar
11. Hansen, M., et al.. Appl. Phys. Lett., 80, 2469 (2002)10.1063/1.1467704Google Scholar
12. Tojyo, T., et al., Jpn. J. Appl. Phys., 40, 3206 (2001).10.1143/JJAP.40.3206Google Scholar
13. Ho, I. and Stringfellow, G. B., Appl.Phys.Lett. 69, 2701 (1996).10.1063/1.117683Google Scholar
14. Rao, M., Kim, D., and Mahajan, S., Appl. Phys. Lett. 85, 1961 (2004).10.1063/1.1791327Google Scholar
15. Westmeyer, A. N. and Mahajan, S., Appl. Phys. Lett. 79, 2710 (2001).10.1063/1.1411984Google Scholar
16. Ohta, M., et al., phys. stat. sol. (a) 204, 2068 (2007).10.1002/pssa.200674748Google Scholar
17. Tomiya, S., et al., phys. stat. sol. (a) 3, 1779 (2006).Google Scholar
18. Goto, O., et al., Proc. of SPIE, 6485, 64850Z, (2007).10.1117/12.725162Google Scholar
19. Thompson, K., et al., Appl. Phys. Lett. 87, 052108 (2005).10.1063/1.2005368Google Scholar
20. Hoummada, K. et al., Appl. Phys. Lett. 89, 181905 (2006).10.1063/1.2370501Google Scholar
21. Galtery, et al., J. Apply. Phys. 104, 013524 (2008).10.1063/1.2938081Google Scholar
22. Moody, M. P., et al., Micro.Res. Tech. 71, 542 (2008).10.1002/jemt.20582Google Scholar