Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:40:09.510Z Has data issue: false hasContentIssue false

Structural Chemistry of Alkaline Earth Hexa-Aluminates

Published online by Cambridge University Press:  16 February 2011

Jae-Gwan Park
Affiliation:
New York State College of Ceramics at Alfred University, Alfred, NY 14802, U.S.A.
A. N. Cormack
Affiliation:
New York State College of Ceramics at Alfred University, Alfred, NY 14802, U.S.A.
Get access

Abstract

Computer-based atomistic simulation techniques have been used to investigate the crystal chemistry and phase relationships in alkaline earth hexa-aluminates. The lattice energies for hexa-aluminate-related structural models are calculated and successfully predict that barium prefers the β-alumina-type structures with charge-balancing defects, whilst calcium or strontium prefers the ideal magnetoplumbite structure. In the case of magnesium, it is predicted that it does not prefer a hexa-aluminate structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1. Haberey, F., Oehlschlegel, G., and Sahl, K., Ber. Dtsch. Keram. Ges., 54, 373 (1977).Google Scholar
2. Kimura, S., Bannai, E., and Shindo, I., Mater. Res. Bull., 17, 209 (1982).Google Scholar
3. Morgan, P.E.D. and Shaw, T.M., Mater. Res. Bull., 18, 539 (1983).Google Scholar
4. Iyi, N., Takekawa, S., Bando, Y., and Kimura, S., J. Solid State Chem., 47, 34 (1983).Google Scholar
5. Yamamoto, N. and O'Keeffe, M., Acta Cryst. B, 40, 21 (1984).Google Scholar
6. Smets, B.M.J. and Verlijsdonk, J.G., Mat. Res. Bull., 21, 1305 (1986).Google Scholar
7. Caflow, C.R.A. and Mackrodt, W.C., in Computer Simulation of Solids, edited by Catlow, C.R.A. and Mackrodt, W.C. (Springer-Verlag, Berlin, 1982) p. 3.Google Scholar
8. Cormack, A.N., Solid State Ionics, 8,187 (1983).Google Scholar
9. Dick, B.G. and Overhauser, A.W., Phys. Rev., 112, 90 (1958).Google Scholar
10. Lewis, G.V. and Catlow, C.R.A., J. Phys. C: Solid State Phys., 18, 1149 (1985).Google Scholar
11. Park, J.-G. and Cormack, A.N., submitted to Phil. Mag. B.Google Scholar
12. Peters, C.R., Bettman, M., Moore, J.W., and Glick, M.D., Acta Cryst., B, 27, 1826 (1971).Google Scholar
13. Lindop, A.J., Matthews, C., and Goodwin, D.W., Acta Cryst, B, 31, 2940 (1975).Google Scholar
14. Verkel, F.P.F. van, Zandbergen, H.W., Verschoor, G.C., and IJdo, D.J.W., Acta Cryst., C, 40, 1124 (1984).Google Scholar
15. Iyi, N., Inoue, Z., Takekawa, S., and Kimura, S., J. Solid State Chem., 52, 66 (1984).Google Scholar
16. Park, J.-G. and Cormack, A.N., submitted to the J. Solid State Chem.Google Scholar
17. Zandbergen, H.W., Mijlhoff, F.C., IJdo, D.J.W., and Tendeloo, G. van, Mater. Res. Bull., 19, 1443 (1984).Google Scholar
18. Iyi, N., Inoue, Z., Takekawa, S., and Kimura, S., J. Solid State Chem., 60, 41 (1985); N. Iyi, Y. Bando, S. Takekawa, Y. Kitami, and S. Kimura, 64, 220 (1986).Google Scholar
19. Wagner, T.R. and O'Keeffe, M., J. Solid State Chem., 73,19 (1988).Google Scholar
20. Kato, K. and Saalfeld, H., Neues Jahrb. Mineral. Abh., 109, 192 (1968).Google Scholar
21. Verstegen, J.M.P.J. and Stevels, A.L.N., J. Lumin., 9,406 (1974).Google Scholar
22. Stevels, A.L.N. and Pauw, A.D.M. Schrama-de, J. Electrochem. Soc.; Solid-State Science and Technology, 123, 691 (1976).Google Scholar
23. Morgan, P.E.D. and Miles, J.A., J. Am. Ceram. Soc., 69, C157–C159 (1986).Google Scholar
24. Thomas, J.O. and Farrington, G.C., Acta Cryst., B, 39, 227 (1983).Google Scholar
25. Xie, L. and Cormack, A.N., Materials Letters, 9, 474 (1990).Google Scholar