Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:29:36.948Z Has data issue: false hasContentIssue false

Structural Characterizations of Symmetrically Strained Sim Gen Superlattices

Published online by Cambridge University Press:  28 February 2011

R. C. Bowman Jr.
Affiliation:
Laboratory Operations, The Aerospace Corporation, P. O. Box 92957, Los Angeles, CA 90009
P. M. Adams
Affiliation:
Laboratory Operations, The Aerospace Corporation, P. O. Box 92957, Los Angeles, CA 90009
C. C. Ahn
Affiliation:
W. M. Keck Laboratory, California Institute of Technology, Pasadena, CA 91125
S. J. Chang
Affiliation:
Device Research Laboratory, Electrical Engineering Department, University of California, Los Angeles, CA 90024
V. Arbet
Affiliation:
Device Research Laboratory, Electrical Engineering Department, University of California, Los Angeles, CA 90024
K. L. Wang
Affiliation:
Device Research Laboratory, Electrical Engineering Department, University of California, Los Angeles, CA 90024
Get access

Abstract

Molecular beam epitaxy was used to grow Sim Gen superlattices on relaxed Si1-xGex buffer layers which symmetrize the strains between the heteroepitaxial layers. Samples with different superlattïce periodicities and individual layer thickness ratios were prepared. The compositions and defect structures of the GexSi1-x buffers have significant influence on the homogeneity and quality of the overlying superlattices. In particular, greater disorder was found in superlattice structures grown on Si0.5 Ge0.5 buffers than for those grown on buffer layers with significantly higher or lower Ge contents.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kasper, E., Kibbel, H., Jorke, H., Brugger, H., Friess, E., and Abstreiter, G., Phys. Rev. B 38, 3599 (1988).Google Scholar
2Kasper, E., Herzog, H.-J., Jorke, H., and Abstreiter, G., Mat. Res. Soc. Symp. Proc. 102, 393 (1988).Google Scholar
3Herzog, H. J., Jorke, H., Kasper, E., and Mantl, S., J. Electrochem. Soc. 136, 3026 (1989).Google Scholar
4Abstreiter, G., Eberl, K., Friess, E., Wegscheide, W. and Zachai, R., J. Cryst. Growth 95, 431 (1989).Google Scholar
5Chang, S. J., Huang, C. F., Kallel, M. A., Wang, K.L., Bowman, R.C. Jr., Adams, P.M., Appl. Phys. Lett. 53, 1835 (1988).Google Scholar
6Chang, S. J., Wang, K. L., Bowman, R. C. Jr., and Adams, P. M., Appl. Phys. Lett. 54, 1253 (1989).Google Scholar
7Bowman, R. C. Jr., Adams, P. M., Chang, S. J., Arbet, V., and Wang, K. L., Mat. Res. Soc. Symp. Proc. 148 (In Press).Google Scholar
8Chang, S. J., Arbet, V., Wang, K. L., Bowman, R. C. Jr., Adams, P. M., Nayak, D., and Woo, J. C. S., J. Elect. Mat. (In Press).Google Scholar
9Greer, A. L. and Spaepen, F., in Synthetic Modulated Structures, edited by Chang, L. L. and Giessen, B. C. (Academic, New York, 1985) p. 419.Google Scholar
10Menendez, J., Pinczak, A., Bevk, J., and Mannaerts, J. P., J. Vac. Sci. Technol. B 6, 1306 (1988).Google Scholar
11Iyer, S. S., Pukite, P. R., Tsang, J. C., and Copel, M. W., J. Cryst. Growth 95, 439 (1989).Google Scholar
12Petroff, P. M., J. Vac. Sci. Technol. 14, 973 (1977).Google Scholar
13Eaglesham, D. J., Kvam, E. P., Maher, D. M., Humphreys, C. J., and Bean, J. C., Phil Mag. A 59, 1059 (1989).Google Scholar