Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:13:52.579Z Has data issue: false hasContentIssue false

Structural Characterization of Iron Nanoparticles Synthesized by Chemical -Methods

Published online by Cambridge University Press:  31 January 2012

A. Ruíz-Baltazar
Affiliation:
Instituto de Investigaciones Metalúrgicas, UMSNH, Edificio U, Ciudad Universitaria, CP 58060, Morelia Michoacán, MEXICO. Email: [email protected]
Claudia López
Affiliation:
Instituto de Investigaciones Metalúrgicas, UMSNH, Edificio U, Ciudad Universitaria, CP 58060, Morelia Michoacán, MEXICO. Email: [email protected]
R. Pérez
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Boulevard Juriquilla 3001, Juriquilla Querétaro, MEXICO CP 76230.
G. Rosas
Affiliation:
Instituto de Investigaciones Metalúrgicas, UMSNH, Edificio U, Ciudad Universitaria, CP 58060, Morelia Michoacán, MEXICO. Email: [email protected]
Get access

Abstract

Different synthesis methods has been employed to produce nanoparticles, however, chemical reduction method offer a effective route to obtained sizes nanoparticles controlled and morphologies very well defined. Iron nanoparticles were synthesized by chemical reduction using sodium borohydride (SB) NaBH4, Fe (III) Chloride hexahydrate (FeCl3·6H2O) as starting metallic salt (MS) and Poly-vinyl pyrrolidone (PVP) as surfactant agent. The nanoparticles have been characterized by transmission electron microscopy (TEM) and UV-Vis spectroscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Guo, L., Huang, Q., Li, X. and Yang, S., Phys. Chem. Chem. Phys. 3, 16611665 (2001).Google Scholar
2. Volokitin, Y., Sinzig, J., de Jong, L., Schmid, G., Vargaftic, M. N. and Moiseev, I. I., Nature 384, 621 (1998).Google Scholar
3. Sun, S., Murray, C.B., Weller, D., Folks, L., Moser, A., Science 287, 19891992 (2000).Google Scholar
4. Sun, Y.P., Li, X.Q., Zhang, W.X., Wang, H., Physicochem. Eng. Aspects 308, 6066 (2007).Google Scholar
5. Li, L., Fan, M., Brown, R.C., Van Leeuwen, J., Wang, J., Wang, W., Song, Y., Zhang, P., Critical Reviews in Environmental Science and Technology 36, 405431 (2006).Google Scholar
6. Kim, T.S., Sun, W., Choi, C.J., Lee, B.T., Rev. Adv Mater Sci. 5, 481486 (2003).Google Scholar
7. Zhao, L.Y., Eldridge, KR., Sukhija, K, Jalili, H., Heinig, N.F., Luenga, K.T., Appl. Phys. Letters 88, 1133 (2006).Google Scholar
8. Hoder, T., Kudrle, V., Frgala, Z, Janca, J. WDS’05 Proceedings of Contributed Papers II, 300305 (2005).Google Scholar
9. Li, X.Q., Elliott, D.W., and Zhang, W.X., Materials and Engineering Aspects . Critical Reviews in Solid State and Materials Sciences, 31, 111122 (2006).Google Scholar
10. Wilcoxon, J.P., Martin, J.E., Provencio, P., Langmuir 16, 9912 (2000).Google Scholar
11. Sun, Y.P., Li, X.Q, Cao, J., Zhang, W. X., Wang, H. P., Advances in Colloid and Interface Science 120, 4756 (2006).Google Scholar
12. Diao, M., Yao, M., Water Research 43, 52435251 (2009).Google Scholar
13. Lee, H.Y, Lee, S.H, Xu, C., Xie, J., Lee, J.H., Wu, B., Koh, A. L., Wang, X., Sinclair, R., Wang, S., Nishimura, D. G, Biswal, S., Sun, S., Cho, S. H. and Chen, X., Nanotechnology 19, 165101 (2008).Google Scholar
14. Lung, H., Welliot, D., Pang, Y., Journal of Environmental Engineering and Management 16, 371380 (2006).Google Scholar
15. Sinnott, S.B., Andrews, R., Qian, D., Rao, A.M., Mao, Z., Dickey, E.C., Derbyshire, F., Chem. Phys. Letters 315, 2530 (1999).Google Scholar
16. Guo, Z., Henry, L., and Podlaha, E.J., ECS Transactions 1 (12), 63-69 (2006).Google Scholar