Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:50:05.604Z Has data issue: false hasContentIssue false

Structural Characterization of Dynamic Annealing Effects of P+ Implanted SI

Published online by Cambridge University Press:  25 February 2011

Marina Berti
Affiliation:
Dipartimento di Fisica G.Galileo, Universita di Padova, Via Marzolo 8 - 35100 Padova, Italy
A.V. Drigo
Affiliation:
Dipartimento di Fisica G.Galileo, Universita di Padova, Via Marzolo 8 - 35100 Padova, Italy
E. Gabilli
Affiliation:
CNR - Istituto LAMEL, Via Castagnoli 1 - 40126 Bologna, Italy
R. Lotti
Affiliation:
CNR - Istituto LAMEL, Via Castagnoli 1 - 40126 Bologna, Italy
G. Lulli
Affiliation:
CNR - Istituto LAMEL, Via Castagnoli 1 - 40126 Bologna, Italy
P.G. Merli
Affiliation:
CNR - Istituto LAMEL, Via Castagnoli 1 - 40126 Bologna, Italy
M. Vittori Antisari
Affiliation:
ENEA - Divisione Scienza dei Materiali - CRE - Casaccia, CP 2400 Roma, Italy
Get access

Abstract

Some renarks about the mechanism for dynamic annealing during high dose rate P implantation of Si are reported. TEM observations and RBS channeling measurements show that the ion bombardment enhances the amorphous to crystalline transformation in the temperature range 200 ≤ T ≤ 600°C. It is found that the ratio between the observed recrystalli-zation velocity and the thermal SPE velocity decreases with increasing temperature. This indicates that a transition temperature must exist between the ion-assisted recrystallization regime and the ?lermal SPE regime. For the energy (100 keV) and the dose rate (60,uA/cm2) used in our experiments the transition temperature is about 700°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Tamura, M., Yagi, K., Sakudo, N., Tokiguti, K., and Tokuyama, T., The Proceedings of the International Conference on Ion Beam Modification of Materials, 1978, p.515 (Gyulai, T., Lohner, T., Pasztor, E. Eds.)Google Scholar
2) Cembali, G., Merli, P.G., and Zignani, F., Appl.Phys.Lett. 38, 808 (1981)Google Scholar
3) Holland, O.W., Narayan, J., Appl.Phys.Lett. 44, 758 (1984)CrossRefGoogle Scholar
4) Narayan, J., Holland, O.W., J.Electrochem.Soc. 131, 2651 (1984)Google Scholar
5) Prussin, S., Margolese, D.I., and Tauber, R.N., J.Appl.Phys. 54, 2316 (1983)CrossRefGoogle Scholar
6) Linnros, J., Svensson, B., and Holmèn, G., Phys.Rev. B 30, 362(1984)Google Scholar
7) Golecki, I., Chapman, G.E., Lau, S.S., Tsaur, B.Y., and Mayer, J.W., Phys.Lett. 71A, 267 (1979)Google Scholar
8) Nakata, J., Takahashi, M., and Kajiyama, K., Jap.J.Appl.Phys. 20, 2211 (1981)CrossRefGoogle Scholar
9) Nakata, J., Kajiyama, K., Appl.Phys.Lett. 40, 686 (1982)Google Scholar
10) Gabilli, E., Lotti, R., Lulli, G., Merli, P.G., and Antisari, M. Vittori, Jap. J.Appl.Phys. 24, L14 (1985)Google Scholar
11) Morehead, F.F. Jr, and Crowder, B.L., Rad. Eff. 6, 27 (1970)CrossRefGoogle Scholar
12) Drosd, R., and Washburn, J., J.Appl.Phys. 53, 99F(1982)CrossRefGoogle Scholar
13) Narayan, J., J.Appl.Phys. 53 8607 (1982)Google Scholar
14) Vook, F.L., and Stein, H.J., Rad.Eff. 6, 11 (1970)CrossRefGoogle Scholar
15) Csepregi, L., Mayer, J.W., and Sigmon, T.W., J.Appl.Phys. 49, 3906 (1978)CrossRefGoogle Scholar