Article contents
Structural Characteristics and Quantum Chemistry Calculation of Si-Doped Boron Carbides
Published online by Cambridge University Press: 15 February 2011
Abstract
Structural characteristics, chemical bonds and thermoelectric properties of Si-doped boron carbides are studied through calculations of various structural unit models by using a self-consistent-field discrete variation Xα method. The calculations show that Si atom doped in boron carbide is in preference to substituting B or C atoms on the end of boron carbide chain, and then may occupy interstitial sites, but it is difficult for Si to substitute B or C atom in the centers of chain or in the icosahedra. A representative structural unit containing a Si atom is [C-B-Si]ε+ [B11C]ε-, while the structural unit without Si is [C-B-B(C)]δ--[B11C]δ+, and the coexistence of these two different structural units makes the electrical conductivity increases. As the covalent bond of Si-B or Si-C is weaker than that of B-B or B-C, the thermal conductivity decreases when Si is added into boron carbides. With the electrical conductivity increases and the thermal conductivity decreases, Si doping has significant effect on thermoelectric properties of boron carbides.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1999
References
- 1
- Cited by