Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:26:17.771Z Has data issue: false hasContentIssue false

Structural Changes in a-Si:H Studied by X-Ray Photoemission Spectroscopy

Published online by Cambridge University Press:  15 February 2011

Shuran Sheng
Affiliation:
Groupe de Recherche en Physique et Technologie des Couches Minces & Département de Génie Physique et de Génie des Matériaux, École Polytechnique de Montréal, Montréal (Québec) H3C 3A7 Canada
Edward Sacher
Affiliation:
Groupe de Recherche en Physique et Technologie des Couches Minces & Département de Génie Physique et de Génie des Matériaux, École Polytechnique de Montréal, Montréal (Québec) H3C 3A7 Canada
Arthur Yelon
Affiliation:
Groupe de Recherche en Physique et Technologie des Couches Minces & Département de Génie Physique et de Génie des Matériaux, École Polytechnique de Montréal, Montréal (Québec) H3C 3A7 Canada
Howard M. Branz
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA
Denis P. Masson
Affiliation:
Nortel Technology, Ottawa (Ontario) K 1Y 4H7, Canada
Get access

Abstract

X-ray irradiation-induced structural changes in undoped a-Si:H have been investigated in detail by X-ray photoemission spectroscopy (XPS). The Si2s and the Si2p peaks were found to shift simultaneously to lower bonding energies, by the same amount, with X-ray irradiation. The shifts are near saturation, at about 0.1 eV, after one hour of irradiation at the intensity used; they can be reversed almost completely, seemingly with an activation energy lower than that for the metastable changes in electronic properties (Staebler-Wronski effect). The present results suggest that essentially the whole Si network structure is affected by the X-ray irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Staebler, D.L. and Wronski, C.R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
2. Norberg, R.E., Fedders, P.A., Bodart, J., Corey, R., Paul, W., Turner, W. and Jones, S., J. NonCryst. Solids 137&138, 71 (1991).Google Scholar
3. Fritzsche, H., Solid State Commun. 94, 953 (1995); in Amorphous and Microcrystalline Silicon Technology, edited by S. Wagner, M. Hack, E.A. Schiff, R. Schropp, I. Shimizu, (Mat. Res. Soc. Symp. Proc. 467, San Francisco, CA, 1997), pp. 19-30.Google Scholar
4. Masson, D.P., Ouhlal, A., and Yelon, A., J. Non-Cryst. Solids 190, 151 (1995).Google Scholar
5. Kong, G.L., Zhang, D.L., Yue, G.Z., and Liao, X.B., Phys. Rev. Lett. 79, 4210 (1997).Google Scholar
6. Yue, G.Z., Kong, G.L., Zhang, D.L., Ma, Z.X., Sheng, S.R., and Liao, X.B., Phys. Rev. B 57, 2387 (1998).Google Scholar
7. Iwata, S. and Ishizaka, A., J. Appl. Phys. 79, 6653 (1996).Google Scholar
8. Pontuschka, W.M., Carlos, W.W., Taylor, P.C. and Griffith, R.W., Phys. Rev. B 25, 4362 (1982).Google Scholar
9. Sheng, S.R., Sacher, E. and Yelon, A., (unpublished).Google Scholar
10. Lu, Z.H., Sacher, E. and Yelon, A., Philos. Mag. B 58, 385 (1988).Google Scholar