Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T06:25:25.020Z Has data issue: false hasContentIssue false

Structural Change of Graphite During Electron Irradiation

Published online by Cambridge University Press:  25 February 2011

J. Koike
Affiliation:
Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331
D. F. Pedraza
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

Highly oriented pyrolytic graphite was irradiated at room temperature with 300-keV electrons. High resolution transmission electron microscopy and electron energy loss spectroscopy were employed to study the structure of electron-irradiated graphite. All the results obtained here consistently indicated die absence of long-range order periodicity in the basal plane and the loose retention of the c-axis periodicity. The structure was modeled based on a mixture of sixfold and non-sixfold atom rings. The formation of non-sixfold atom rings was related to the observed buckling and discontinuity of the original graphite basal plane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kelly, B. T., Physics of Graphite (Applied Science Publishers, Essex, England 1981)Google Scholar
2. Maeta, H., Iwata, T., and Okuda, S., J. Phys. Soc. Japan, 39, 1558 (1975)Google Scholar
3. Niwase, K., Nakamura, K., Shikama, T., and Tanabe, T., J. Nucl. Mater. 170, 106 (1990)Google Scholar
4. Kelly, B. T., J. Nucl. Mater. 172, 237 (1990)Google Scholar
5. Tanabe, T., Muto, S., Gotoh, Y., and Niwase, K., J. Nucl. Mater, 175, 258 (1990)Google Scholar
6. Gotoh, Y., Shimizu, H., and Murakami, M., J. Nucl. Mater. 162–164, 865 (1989)Google Scholar
7. Niwase, K., Nakamura, K., Tanaka, I., Miyamoto, Y., and Tanabe, T., J. Nucl. Mater. 179–181, 214 (1991)Google Scholar
8. Matsunaga, A., Kinoshita, C., Nakai, K., and Tomokiyo, Y., J. Nucl. Mater. 179–181, 457 (1991)CrossRefGoogle Scholar
9. Tanabe, T., Muto, S., and Niwase, K., Appl Phys. Lett. 61, 1638 (1992)Google Scholar
10. Koike, J. and Pedraza, D. F., Proc. of Int. Conf. on Beam Processing of Advanced Materials, to be published.Google Scholar
11. Oen, O. S., Cross Section for Atomic Displacements in Solids by Fast Electrons, ORNL-4897 (National Technical Information Service, U. S. Dept. of Commerce, Springfield, VA 1973), p. 29 Google Scholar
12. Fisher, S. B., Rad. Effects 5, 239 (1970)CrossRefGoogle Scholar
13. Edgerton, R. F., Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum Press, New York 1986), p. 152 Google Scholar
14. Xu, C. H., Fu, C. L., and Pedraza, D. F., in preparationGoogle Scholar
15. MacKenzie, D. R., Muller, D. A., Kravtchinskaia, E., Segal, D., Cockayne, D. J. H., Amaratunga, D., and Silva, R., Thin Solid Films, 206, 198 (1991)CrossRefGoogle Scholar
16. Galli, G., Martin, R. M., Car, R., and Parrinello, M., Phys. Rev. Lett. 62, 555 (1989)CrossRefGoogle Scholar
17. Townsend, S. J., Lenosky, T. J., Muller, D. A., Nichols, C. S., and Eiser, V., Phys. Rev. Lett. 69, 921 (1992)Google Scholar