Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T18:47:56.665Z Has data issue: false hasContentIssue false

Structural and vibrational properties of silicon dioxide thin films densified by medium-energy particles bombardment

Published online by Cambridge University Press:  21 March 2011

Alexis Lefèvre
Affiliation:
Département de Physique et Groupe des Couches Minces (GCM), Université de Montréal, Case Postale 6128, Succursale Centre-Ville, Montréal Québec H3C 3J7, Canada; e-mail: [email protected]
Laurent J. Lewis
Affiliation:
Département de Physique et Groupe des Couches Minces (GCM), Université de Montréal, Case Postale 6128, Succursale Centre-Ville, Montréal Québec H3C 3J7, Canada; e-mail: [email protected]
Ludvik Martinu
Affiliation:
Département de Génie Physique et de Génie des Matériaux et Groupe des Couches Minces (GCM), École Polytechnique de Montréal, Case Postale 6079, Succursale Centre-Ville, Montréal, Québec H3C 3A7, Canada
Michael R. Wertheimer
Affiliation:
Département de Génie Physique et de Génie des Matériaux et Groupe des Couches Minces (GCM), École Polytechnique de Montréal, Case Postale 6079, Succursale Centre-Ville, Montréal, Québec H3C 3A7, Canada
Get access

Abstract

Using classical molecular-dynamics simulations, we worked out a simple model of Ion Beam Assisted Deposition (IBAD) of silicon dioxide on an amorphous silica substrate, in view to in- vestigate the modifications of the structural and vibrational properties induced by medium-energy bombardment. Atoms are assumed to interact via the two- and three-body potential developed by Nakano et al.[1]. Analysis of the films grown with increasing ratio, R, of medium-(30 eV) to low- (1 eV) kinetic energy SiO2 particles shows that the density rises rapidly, from 1.3 g/cm3 for R =0 to about 2.3 g/cm3 for R = 0.7. This effect can be associated primarily with structural changes occurring at an intermediate length scale (4-10 Å), as it manifests itself by changes in the so-called first sharp diffraction peak (FSDP), the finger-print of medium range order (MRO) in a-SiO2 glass [2, 3]. We found also that the densification results in a significant decrease of the number of “soft” vibrational modes, occurring in the 0.5-3.5 THz frequency range.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nakano, A., Bi, L., Kalia, R., and Vashishta, P., Phys. Rev. B 49, 9441 (1994).Google Scholar
[2] Moss, S. C. and Price, D. L., in Physics of disordered materials, edited by Adler, D., Fritzsche, H., and Ovshinsky, S. R. (Plenum, New-York, 1985), 77.Google Scholar
[3] Nakano, A., Kalia, R., and Vashishta, P., J. Non-Cryst. Solids 171, 157 (1994).Google Scholar
[4] Martinu, L. and Poitras, D., J. Vac. Sci. Tech. A 18, 2627 (2000).Google Scholar
[5] Pulker, H. K., Surf. Coat. Technol. 112, 250 (1999).Google Scholar
[6] Handbook of plasma processing technology, edited by Rossnagel, S. M., Cuomo, J. J. and Westwood, W. D., (Noyes Publications, Park Ridge, 1990).Google Scholar
[7] Vashishta, P., Kalia, R., Nakano, A., Li, W., and Ebbsjö, I., in Amorphous Insulators and Semiconductors, edited by Thorpe, M. F. and Mitkova, M. I., (Kluwer, Dordrecht, 1997), 151.Google Scholar
[8] George, C. F. and D'Antonio, P., J. Non-Cryst. Solids 34, 323 (1979).Google Scholar
[9] Al-Bayati, A. H., Todorov, S. S., Boyd, K. J., Marton, D., Rabalais, J. W. and Kulik, J., J. Vac. Sci. Technol. B 13, 1639 (1995).Google Scholar
[10] Mousseau, N., Barkema, G. T., and Leeuw, S. de, J. Chem. Phys. 112, 960 (2000).Google Scholar
[11] McNeil, J. R., Barron, A. C., Wilson, S. R., and Hermann, W. C. Jr., Appl. Opt. 23, 552 (1984).Google Scholar
[12] Brunet-Bruneau, A., Souche, D., Fisson, S., Van, V. Nguyen, Vuye, G., Abeles, F., and Rivory, J. J. Vac. Sci. Technol. A 16, 2281 (1998); A. Brunet-Bruneau, J. Rivory, B. Rafin, J. Y. Robic, and P. Chaton, J. Appl. Phys. 82, 1330 (1997).Google Scholar
[13] Smith, R., Jakas, M., Ashworth, D., Oven, B., Bowyer, M., Chakarov, I., and Webb, R., in Atomic and ion collisions in solids and at surfaces, edited by Smith, R. (Cambridge University Press, Cambridge, 1997), 247.Google Scholar
[14] Campbell, T., Kalia, R., Nakano, A., Shimojo, F., Tsuruta, K., Vashishta, P., and Ogata, S., Phys. Rev. Lett. 82, 4018 (1999).Google Scholar
[15] Himmel, B., Gerber, T., and Neumann, H. G., Phys. Stat. Sol. A 88, K127 (1985).Google Scholar
[16] Caprion, D., Jund, P., Bonnet, J. P. and Jullien, R., J. Non-Cryst. Solids, 232–234, 459 (1998).Google Scholar
[17] Terki, F., Levelut, C., Boissier, M., and Pelous, J., Phys. Rev. B, 53, 2411 (1996).Google Scholar
[18] Sugai, S. and Onodera, A., Phys. Rev. Lett. 77, 4210 (1996).Google Scholar
[19] Jund, P. and Jullien, R., J. Chem. Phys. 113, 2768 (2000).Google Scholar
[20] Rino, J., Ebbsjö, I., Kalia, R., Nakano, A., and Vashishta, P., Phys. Rev. B 47, 3053 (1993).Google Scholar