Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:15:33.755Z Has data issue: false hasContentIssue false

Structural and Solid State Chemistry of Mixed Valence Oxides

Published online by Cambridge University Press:  21 February 2011

Galy Jean*
Affiliation:
Centre d'Elaboration de Matériaux et d'Etudes Structurales – Laboratoire d'Optique Electronique C N R S, 29, rue Jeanne Marvig, B.P. 4347 – 31055 TOULOUSE Cedex – France.
Get access

Abstract

The structural evolution versus oxygen adsorption ↔ desorption of the LnBa2Cu3O6+x series, the influence of rare-earth substitution on oxygen network and copper coordination (CN = 2, 4, 4 + 1, 5) in Bi2Sr2Ca1−yLnyCu2O8 series (Ln = La, Yb; 0≤y≤1) are followed. Images of parent mixed valence oxides, i.e. vanadium bronzes, with their single or double layers structures versus intercalated ions with ideal intergrowth structures like the new Na0.70V2O5 oxybronze are presented. The ability to exhibit double non stoichiometry, i.e. LixV3O8−y (0≤y≤1) in the homologous series LixV3(1+n)O8+7n (0≤n≤∞) is explained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] MRS Bulletin, XIV, n°1, p. 20–71, 1989.Google Scholar
[2] Galy, J., Enjalbert, R., Millet, P., Casanove, M.J. and Roucau, C., High-Tc Superconductors, Ed. Weber, H.W., Plenum Pub. Corp., p. 75, 1988.Google Scholar
[3] Michel, C., Hervieu, M., Borel, M.M., Grandin, A., Deslandes, F., Provost, J. and Raveau, B., Z. Phys., B68, p. 421, 1987.Google Scholar
[4] Millet, P., Seeger, O., Enjalbert, R. and Galy, J., submitted paper (1989).Google Scholar
[5] Casanove, M.J., Baules, P., Roucau, C., and SNOECK, E., submitted paper (1989).Google Scholar
[6] Tarascon, J.M., Page, Y. Le, Barboux, P., Bagley, B.G., Greene, L.H., Mckinnon, W.R., Hull, G.W., Giroud, M. and Hwang, D.M., Phys. Rev., B37, p. 9332, 1988.Google Scholar
[7] Schnering, H.G. von, Walz, L., Schwarz, M., Becker, W., Hartweg, M., POPP, T., Hetrich, B., Muller, P. and KÄmpg, G., Angew. Chem. Int. Ed, Engl., 27, p. 574, 1988.Google Scholar
[8] Galy, J. and Carpy, A., Phil. Mag., 29, n ° 5, p. 1207, 1974.Google Scholar
[9] Portier, R., Carpy, A., Fayard, M. and Galy, J., Phys. Stat. Sol. (a), 30, p. 683, 1975.Google Scholar
[10] Carpy, A. and Galy, J., Acta Cryst., B31, p.1481, 1975.Google Scholar
[11] Cava, R.J., Santoro, A., Murphy, D.W., Zamurak, S.M., Fleming, R.M., March, D., Roth, R.S., J. Solid State Chem., 65, p. 63, 1986.Google Scholar
[12] Bouloux, J. and Galy, J., Acta Cryst., B22, p.269, 1973.Google Scholar
[13] Bouloux, J., Milosevic, I. and Galy, J., J. Solid State Chem., 16, p. 393, 1976.Google Scholar
[14] Andersson, S. and Wadsley, A.D., Acta Cryst., 15, p.201, 1962.Google Scholar
[15] Andersson, S., Acta Chem. Scand., 12, p. 1371, 1965.Google Scholar
[16] Savariault, J.M., private communication 1989.Google Scholar
[17] Volkov, V.L., Z. Neorg. Khim., 28, p. 477, 1983.Google Scholar
[18] Takayama-Muromachi, E. and Kato, K., J. Solid State Chem., 71, p. 274, 1987.Google Scholar
[19] Mumme, W.G. and Watts, J.A, J. Solid State Chem., 3 p. 319, 1971.Google Scholar