Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T09:40:33.219Z Has data issue: false hasContentIssue false

Structural and Physical Characterization of Li2O:P2O5:MO3 (M = Cr2, Mo, W) Ion Conducting Glasses

Published online by Cambridge University Press:  25 February 2011

B.V.R. Chowdari
Affiliation:
Department of Physics, National University of Singapore, Kent Ridge, Singapore 0511.
K.L. Tan
Affiliation:
Department of Physics, National University of Singapore, Kent Ridge, Singapore 0511.
W.T. Chia
Affiliation:
Department of Physics, National University of Singapore, Kent Ridge, Singapore 0511.
Get access

Abstract

The conductivity of the Li2O:P2O5:MO3 (M = Cr2, Mo, W) glasses increases as P2O5 is progressively substituted by MO3 and as the Li2O content increases. Amongst the glass compositions studied, the 0.50Li2O:0.20P2O5:0.30WO3 glass has the highest conductivity at 25°C of 2. 1×10−6 ×−1 cm−1. The glass transition temperature of the glasses increases initially with network former substitution, reaches a maximum at around MO3/P2O5 = 1, and decreases with further substitution. X-ray photoelectron spectroscopy reveals the presence of M ions in more than one oxidation state and oxygen species such as P=O, P-O-P, P-O, M-O-M, M-O and P-O-M. Raman spectroscopy shows that the Li2O:P2O5:MoO3 and Li2O:P2O5:WO3 glasses consist of PO4, MoO4 (WO4) and MoO6 (WO6) polyhedra while the Li2O:P2O5:Cr2O3 glasses consist of the PO4 and CrO6 polyhedra only. The phosphate groups are preferentially modified by Li2O in comparison with the tungstate, molybdate and chromate groups. The increasing number of non-bridging oxygen atoms per phosphate group may be related to the increasing conductivity with the progressive substitution of MO3 for P2O5.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chowdari, B.V.R., Tan, K.L., Chia, W.T. and Gopalakrishnan, R., J. Non-Cryst. Solids 128, 18 (1991).Google Scholar
2. Chowdari, B.V.R., Tan, K.L., Chia, W.T. and Gopalakrishnan, R., in Recent Advances in Fast Ion Conducting Materials and Devices, edited by Chowdari, B.V.R., Liu, Q.G. and Chen, L.Q. (World Scientific, Singapore, 1990), p. 513.Google Scholar
3. Chowdari, B.V.R., Tan, K.L. and Chia, W.T., Solid State Ionics 53–56, 1172 (1992).Google Scholar
4. Chia, W.T., Chowdari, B.V.R. and Tan, K.L., to be published in J. Mater. Sci.Google Scholar
5. Eisenberg, A., Farb, H. and Cool, L.G., J. Polymer Sci. A–24, 855 (1966).Google Scholar
6. Martin, S.W. and Angell, C.A., J. Non-Cryst. Solids 83, 185 (1986).Google Scholar
7. Martin, S.W. and Angell, C.A., J. Phys. Chem. 90, 6736 (1986).Google Scholar
8. Nassau, K., Glass, A.M., Grasso, M. and Olson, D.H., J. Electrochem. Soc. 127, 2743 (1980).Google Scholar
9. Chowdari, B.V.R., Tan, K.L., Chia, W.T. and Gopalakrishnan, R., J. Non-Cryst. Solids 119, 95 (1990).Google Scholar
10. Tatsumisago, M., Kowada, Y. and Minami, T., Phys. Chem. Glasses 29, 63 (1988).Google Scholar
11. Beattie, I.R. and Gilson, T.R., J. Chem. Soc. A 1969, 2322.Google Scholar
12. Hill, C.G. Jr., and Wilson, J.H. III, J. Molecular Catalysis 63, 65 (1990).Google Scholar
13. Morgan, S.H. and Magruder, R.H. III, J. Am. Ceram. Soc. 73, 753 (1990).Google Scholar
14. Busey, R.H. and Keller, O.L. Jr., J. Chem. Phys. 41, 215 (1964).Google Scholar
15. Galeener, F.L. and Mikkelsen, J.C. Jr., Solid St. Commun. 30, 505 (1979).Google Scholar
16. Kierkegaard, P., Eistrat, K. and Rosenhall, A.R., Acta. Chem. Scand. 18, 2237 (1964).Google Scholar
17. Wells, A.F., Structural Inorganic Chemistry (Oxford, Oxford, 1984), p. 595.Google Scholar
18. Yokokawa, T. and Kohsaka, S., J. Chem. Eng. Data 24, 167 (1979).Google Scholar
19. Kowada, Y., Tatsumisago, M. and Minami, T., J. Phys. Chem. 93, 2147 (1989).Google Scholar
20. Pradel, A., Pagnier, T. and Ribes, M., Solid State Ionics 17, 147 (1985).Google Scholar
21. Scagliotti, M., Villa, M. and Chiodelli, G., J. Non-Cryst. Solids 93, 350 (1987).Google Scholar
22. Villa, M., Scagliotti, M. and Chiodelli, G., J. Non-Cryst. Solids 94, 101 (1987).Google Scholar
23. Furukawa, T. and White, W.B., J. Mater. Sci. 16, 2689 (1981).Google Scholar
24. Nelson, C. and Tallant, D.R., Phys. Chem. Glasses 25, 31 (1984).Google Scholar
25. Chakraborty, I.N. and Condrate, R.A., Snr., Phys. Chem. Glasses 26, 68 (1985).Google Scholar