Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T19:48:02.623Z Has data issue: false hasContentIssue false

Structural and Photoluminescence Studies of Er Implanted Lt-GaAs:Be

Published online by Cambridge University Press:  10 February 2011

R.L. Maltez
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
Z. Liliental-Weber
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
J. Washburn
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
M. Behar
Affiliation:
Instituto de Física, UFRGS, Porto Alegre, RS, Brazil 91501-970
P.B. Klein
Affiliation:
Naval Research Laboratory, Washington DC 20375-5347
P. Specht
Affiliation:
University of California, Department of Materials Science, Berkeley, California 94720
E.R. Weber
Affiliation:
University of California, Department of Materials Science, Berkeley, California 94720
Get access

Abstract

Characteristic 1.54 μm Era3+ emission has been observed from Er-implanted and annealed, low-temperature grown GaAs:Be samples. Cross-sectional transmission electron microscopy (TEM) studies reveal very little structural damage for elevated temperature implants up to an Er total fluence of 1.36 × 1014 Er/cm2. No Er emission was observed from any of the as-implanted samples, while post-implantation annealing optimized the Er emission intensity near 650°C. The Er-emission appears on top of a broad background luminescence peaking near 1500 nm. Significant enhancement of the optically active Er incorporation was achieved when the implantation was carried out at 300TC. The Er emission intensity was found to scale linearly with the Er implantation fluence for samples with an Er concentration up to ∼1019 Er/cm3. The sample with the highest Er concentration (∼1020 Er/cm3) began to show a sublinear dependence. The beginning of Er precipitation was observed after 750°C annealing, but it could even be observed after a 650°C annealing for the highest Er concentration sample. These precipitates are likely ErAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pomrenke, G.S., Ennen, H. and Haydl, W., J. Appl. Phys. 59, 601 (1986).Google Scholar
2. Polman, A., J. Appl. Phys. 82, 1 (1997).Google Scholar
3. Nakata, J., Taniguchi, M. and Takahei, K., Appl. Phys. Letters 61, 2665 (1992).Google Scholar
4. Takahei, K., Taguchi, A., Horikoshi, Y., Nakata, J., J. Appl. Phys. 76,4332 (1994).Google Scholar
5. Klein, P.B., Moore, F.G. and Dietrich, H.B., Appl. Phys. Letters 58, 502 (1991).Google Scholar
6. Elsaesser, D.W., Colon, J.E., Yeo, Y.K., Hengehold, R.L., Evans, K.R. and Solomon, J.S., J. Crystal Growth 127, 707 (1993).Google Scholar
7. Coffa, S., Priolo, F., Franzb, G., Bellani, V., Camera, A. and Spinella, C., Phys. Rev. B 48, 11782 (1993).Google Scholar
8. Nakata, J., Jourdan, N., Yamaguchi, H., Takahei, K., Yamamoto, Y. and Kido, Y., J. Appl. Phys. 77, 3095 (1995).Google Scholar
9. Low Temperature (LT) GaAs and Related Materials, edited by Witt, G.L., Calawa, R., Mishra, U. and Weber, E. (Mater. Res. Soc. Symp. Proc. 241, 1991); F.W. Smith, p. 3 in previous reference.Google Scholar
10. Specht, P., Jeong, S., Sohn, H., Luysberg, M., Prasad, A., Gebauer, J., Krause-Rehberg, R. and Weber, E.R., Int. Conf. on Defects in Semiconductors Proc., ICDS 19, Aveiro, Portugal, 1997, in press.Google Scholar
11. Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids, Vol. 1 (Pergamon Press, Oxford, 1985).Google Scholar
12. Poole, I., Singer, K.E., Peaker, A.R., J. Crystal Growth 121, 121 (1992).Google Scholar