Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:33:38.386Z Has data issue: false hasContentIssue false

Structural and optoelectronic properties of amorphous and microcrystalline silicon deposited at low substrate temperatures by RF and HW CVD

Published online by Cambridge University Press:  15 February 2011

P. Alpuim
Affiliation:
Instituto de Engenharia de Sistemas e Computadores (INESC), Rua Alves Redol, 9, 1000 Lisboa, Portugal, [email protected]
V. Chu
Affiliation:
Instituto de Engenharia de Sistemas e Computadores (INESC), Rua Alves Redol, 9, 1000 Lisboa, Portugal
J. P. Conde
Affiliation:
Department of Materials Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
Get access

Abstract

The structural and optoelectronic properties of silicon thin films prepared by hot wire chemical vapor deposition and radio frequency plasma enhanced chemical vapor deposition are studied in the range of substrate temperatures (Tsub)from 100 °C to 25 °C. The defect density, structure factor and bond angle disorder of amorphous silicon films (a-Si:H) deposited by both techniques are strongly improved by the use of hydrogen dilution. Correlation of these structural properties with important optoelectronic properties, such as photo-to-dark conductivity ratio, is made. Microcrystalline silicon (μc-Si:H) is obtained using HW with a large crystalline fraction for hydrogen dilutions above 85% independently of Tsub. The deposition of μc-Si:H by RF requires increasing the hydrogen dilution and shows decreasing crystalline fraction as Tsub is decreased. The properties of the low Tsub films are compared to those of samples produced at 175 °C and 250 °C in the same reactors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.See, for example, Street, R. A., Hydrogenated Amorphous Silicon (Cambridge University Press, 1991).Google Scholar
2. Meier, J., Torres, P., Platz, R., Dubail, S., Kroll, U., Selvas, J. A. Anna, Vaucher, N. Pellaton, Hof, Ch., Fischer, D., Keppner, H., Shah, A., Ufert, K.-D., Giannoules, P. and Koehler, J., Mat. Res. Soc. Symp. Proc. 420, 3 (1996).Google Scholar
3. Conde, J. P., Brogueira, P., Chu, V., Philosophical Magazine B 76, No. 3, 299 (1997).Google Scholar
4. Mahan, A. H., Carapella, J., Nelson, B.P., Crandall, R.S. and Balberg, I., J Appl. Phys. 69, 6728 (1991)Google Scholar
5. Zedlitz, R., Kessler, F. and Heintze, M., J Non.-Cryst. Solids,164–166, 83 (1993).Google Scholar
6. Cifre, J., Bertomeu, J., Puigdollers, J., Polo, M.C., Andreu, J. and Lloret, A., Appl. Phys. A 59, 645 (1994).Google Scholar
7. Middya, A.R., Perrin, J., Huc, J., Moncel, J.L., Parey, J.Y. and Rose, G., Mat. Res. Soc. Symp. Proc. 377, 119 (1995).Google Scholar
8. Vanacek, M., Kocka, J., Strichlik, J., Kosicek, Z., Stika, O., Triska, A., Sol. Energy Mater. 8, 411 (1983).Google Scholar
9. Wyrsch, N., Finger, F., McMahon, T.J., Vanacek, M., J.Non-Cryst. Solids 137–138, 347 (1991 Google Scholar
10. Fang, C.J., Gruntz, K.J., Ley, L., Cardona, M., Demond, F.J., Mueller, G., Kalbitzer, S., J.NonCryst. Solids 35–36, 255 (1980).Google Scholar
11. Kaneko, T., Wakagi, M., Onisawa, K., Minemura, T., Appl. Phys. Lett 64, 1865 (1994)Google Scholar
12. , Veprek, Sarott, F. A., Iqbal, Z., Phys. Rev.B 36, 3344 (1987)Google Scholar
13. He, Y., Ying, C., Cheng, G., Wang, L., Liu, X., Hu, G. Y., J Appl. Phys. 75, 797 (1994).Google Scholar
14. Hiroyama, Y., Suzuki, R., Hirano, Y., Sato, F., Motooka, T., Jpn. J. Appl. Phys., Part 1 34, 5515 (1995).Google Scholar