Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:41:15.527Z Has data issue: false hasContentIssue false

Structural and Optical Properties of Group III-Nitride Quantum Wells Studied by (S)Tem and CL

Published online by Cambridge University Press:  10 February 2011

H. Lakner
Affiliation:
Gerhard-Mercator-Universität Duisburg, Werkstoffe der Elektrotechnik, D-47048 Duisburg, Germany, [email protected]
Q. Liu
Affiliation:
Gerhard-Mercator-Universität Duisburg, Werkstoffe der Elektrotechnik, D-47048 Duisburg, Germany, [email protected]
G. Brockt
Affiliation:
Gerhard-Mercator-Universität Duisburg, Werkstoffe der Elektrotechnik, D-47048 Duisburg, Germany, [email protected]
A. Radefeld
Affiliation:
Gerhard-Mercator-Universität Duisburg, Werkstoffe der Elektrotechnik, D-47048 Duisburg, Germany, [email protected]
F. Schulze-Kraasch
Affiliation:
Gerhard-Mercator-Universität Duisburg, Werkstoffe der Elektrotechnik, D-47048 Duisburg, Germany, [email protected]
F. Scholz
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
Get access

Abstract

Wurtzite InGaN/GaN and AlGaN/GaN heterostructures grown on sapphire by metal organic vapor phase epitaxy were studied using scanning transmission electron microscopy (STEM), cathodoluminescence (CL) combined with secondary electron (SE) imaging, high resolution x-ray diffractometry (HRXRD), and atomic force microscopy (AFM).

SE imaging and AFM were used to study the surface morphology. The results indicate the presence of the following structural defects on the surface of InGaN/GaN heterostructures: hexagonal mesa-like structures, hexagonal pyramids and micropipes, while the surface of the AlGaN/GaN heterostructures are mirror-like smooth. The local optical properties of defects and defect free regions were studied using spatially resolved CL at low temperature. In addition, the dependence of the optical properties of both sorts of heterostructures on the quantum well width or chemical composition of ternary materials was investigated. The structural properties of the heterostructures were studied by STEM and HRXRD. Convergent beam electron diffraction (CBED) and corresponding simulations, convergent beam imaging (CBIM), and high resolution x-ray diffraction (HRXRD) were used to study the strained layers. Dislocations and interface properties were characterized using bright-field imaging, while the chemical compositions fluctuations were analyzed by Z-contrast imaging and energy dispersive x-ray microanalysis (EDX).

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).10.1063/1.111832Google Scholar
[2] Khan, M. A., Kuznia, J. N., Olson, D. T., Schaff, W. J., Burm, J. W., and Shur, M. S., Appl. Phys. Lett. 65, 1121, (1994).10.1063/1.112116Google Scholar
[3] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L217 (1996).10.1143/JJAP.35.L217Google Scholar
[4] Ho, I-hsiu and Stringfellow, G. B., Appl. Phys. Lett. 69, 2701 (1996).10.1063/1.117683Google Scholar
[5] Scholz, F.,.Hdrle, V., Streuber, F., Sohmer, A., Bolay, H., Syganow, V., Dömen, A., Im, J. S., Hangleiter, A., Duboz, J. Y., Galtier, P., Rosencher, E., Ambacher, O., Brunner, D., and Lakner, H., Mat. Res. Soc. Symp. Proc. Vol.449, 314 (1997)Google Scholar
[6] Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992).10.1116/1.585897Google Scholar
[7] Polyakov, A. Y., Shin, M., Freitas, J. A., Skowronski, M., Greve, D. W., Wilson, R. G., J. Appl. Phys. 80, 6349 (1996).Google Scholar
[8] Scholz, F.,.Härle, V., Streuber, F., Bolay, H., Douml;rnen, A., Kaufmann, B., Syganow, V., Hangleiter, A., J. Cryst. Growth 170, 321, (1997).10.1016/S0022-0248(96)00606-9Google Scholar
[9] Scholz, F.,.Härle, V., Bolay, H., Streuber, F., Kaufmann, B., Reyher, G., Dörnen, A., Gfrörer, O., Im, S.-J., and Hangleiter, A., Solid State Elec. 41, 141 (1997).10.1016/S0038-1101(96)00154-2Google Scholar
[10] Lakner, H., Liu, Q., Brockt, G., Radefeld, A., Meinert, A., and Scholz, F., will be published in Mater. Sci. & Eng. B (1997).Google Scholar
[11] Liu, Q., Lakner, H., Meinert, A., Scholz, F, Sohmer, A. and Kubalek, E., E-MRS'97, Straβbourg, France, 1620 June, (1997), will be published in Mater. Sci. & Eng. B (1997).Google Scholar
[12] Liu, Q., Prost, W., and Tegude, F. J., Appl. Phys. Lett. 67, 2807, (1995).10.1063/1.114791Google Scholar
[13] Lakner, H., Bollig, B., Ungerechts, S., and Kubalek, E., J. Appl. Phys. 29, 1767 (1996).Google Scholar
[14] Spence, J. C. H. and Zuo, J. M., Electron Microdiffraction, Plenum Press New York, (1992).10.1007/978-1-4899-2353-0Google Scholar
[15] Middleton, P. G., Trager-Cowan, C., Mohammed, A., O'Donnel, K. P., Van Der Stricht, W., Moerman, I. and Demeester, P., Mat. Res. Soc. Symp. Proc. Vol.449, (1997).Google Scholar
[16] Beaumont, B., Vaille, M., Boufaden, T., Jani, B. el, Gibart, P., J. Cryst. Growth 170, 316 (1997).Google Scholar
[17] Lakner, H., Brockt, G., Mendorf, C., J. Elec. Mat. 26, 11031108 (1997).10.1007/s11664-997-0002-2Google Scholar
[18] Narukawa, Y., Kawakami, Y., Shizuo, F., Mat. Res. Soc. Symp. Proc. Vol.449, (1997).Google Scholar
[19] Brockt, G., Mendorf, C., Radefeld, A., Scholz, F., and Lakner, H., Inst. Phys. Conf. Ser. No. 157, 221226, (1997).Google Scholar