No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
The optical and structural properties of amorphous sputtered films of Ge2Sb2Te5 depend strongly on the preparation conditions. Films grown at higher growth rates exhibit greater local strains as indicated by the slope of the optical absorption in the exponential “band-tail” region, but these films also incorporate smaller densities of oxygen impurities. At slower growth rates the band-tail slopes are sharper (smaller local strains) but there is greater oxygen incorporation. We will discuss several experiments that suggest that the local strain relief in the films grown at slower growth rates is due to a greater ability of the atoms to rearrange on the growing surface and not to increased oxygen incorporation. Small angle x-ray scattering experiments show that the films exhibit small elliptical “voids” with long axes perpendicular to the growing surface. The approximate dimensions of these voids are 3 × 20 nm. These films can be switched optically with little change in surface topography as measured by atomic force microscopy. Electron spin resonance measurements indicate that paramagnetic defects exist in some films but are either absent or below the detection limit (~ 1018 cm-3) in most films. The implications of these results for the switching mechanisms will be discussed.