Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T07:41:32.793Z Has data issue: false hasContentIssue false

Structural and Optical Properties of AlGaN/GaN Quantum-Well Structures Grown by MOCVD on Sapphire

Published online by Cambridge University Press:  10 February 2011

J. Wagner
Affiliation:
Fraunhofer-lnstitut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
J. L. Rouviere
Affiliation:
CEA-Grenoble, Departement de Recherche Fondamentale sur la Matiere Condensee, 17, Rue de Martyrs, 38054 Grenoble Cedex 9, France
H. Jürgensen
Affiliation:
AIXTRON Semiconductor Technologies, Kackertstr. 16–17, D-52072 Aachen, Germany
Get access

Abstract

AlGaN/GaN single quantum wells (QW) have been grown on 2” sapphire substrates (c-plane) by metal-organic chemical vapor deposition (MOCVD). The well width was varied between 20 and 40 Å for barriers containing 4 % and 16 % of aluminium. Cathodoluminescence (CL) and Photoluminescence (PL) spectra of the samples show, as expected, a shift of the quantum well emission to higher energies with decreasing well width, whereas the barrier luminescence stays at constant energy. Examination of the QWs by resonant Raman spectroscopy tuned to the gap of the well, clearly shows the GaN A1(LO) phonon besides the AlGaN A1(LO) phonon from the barrier. For a well width of 20 Å we observe a shift of the A1(LO) GaN phonon indicating a certain degree of intermixing at the GaN/AlGaN interface. Atomic Force Microscopy (AFM) reveals that the layers are growing in a 2-dimensional step flow growth mode with step heights of 3 and 6 Å corresponding to mono- and biatomic steps. High Resolution Transmission Electron Microscopy (HRTEM) micrographs of the 40 Å well show a very low interface roughness of 1–2 atomic layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Khan, M.A., Skogman, R.A., Van Hove, J.M., Appl. Phys. Lett 56 (13) 1990, 1257 Google Scholar
2. Schetzina, J.F., Mat. Res. Soc. Symp. Proc. Vol 395 (1996), 123 Google Scholar
3. Salvador, A., Liu, G., Kim, W., Aktas, Ö., Botchkarev, A., Morkoc, H., Appl. Phys. Lett. 67 (22) 1995, 3322 Google Scholar
4. Chen, G.D., Smith, M., Lin, J.Y., Jiang, H.X., Appl. Phys. Lett. 68 (20) 1996, 2784 Google Scholar
5. Rouviere, J.L, Arlery, M., Bourret, A., Niebuhr, R., Bachem, K.H., Inst. Phys. Conf. Ser., Vol. 146 (1995) 285 Google Scholar
6. Niebuhr, R., Bachem, K.H., Merz, C., Santic, S., Kaufmann, U., Behr, D., Wagner, J., Rothemund, W., Lu, Y., presented at the 1996 OMVPE Conference, Cardiff, Wales UK (unpublished)Google Scholar
7. Behr, D., Niebuhr, R., Wagner, J., Bachem, K.H., Kaufmann, U., Appl. Phys. Lett, (to be published)Google Scholar