Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T04:14:55.315Z Has data issue: false hasContentIssue false

Structural and Magnetic Properties of La0.7Sr0.3Mn1-xNixO3 (x=0.05, 0.1, 0.2, 0.3, 0.4)

Published online by Cambridge University Press:  23 June 2011

Thomas F. Creel
Affiliation:
Department of Physics, Missouri University of Science and Technology, Rolla, MO, U.S.A.
Jinbo B. Yang
Affiliation:
State Key Laboratory for Artificial Microstructure and Mesoscopic Physics and School of Physics, Peking University, Beijing
Mehmet Kahveci
Affiliation:
Department of Physics, University of Missouri, Columbia, MO, U.S.A
Jagat Lamsal
Affiliation:
Department of Physics, University of Missouri, Columbia, MO, U.S.A
Satish K. Malik
Affiliation:
Departamento de Física Teórica e Experimental, UFRN, 59072-970 NATAL- RN, Brazil
S. Quezado
Affiliation:
Departamento de Física Teórica e Experimental, UFRN, 59072-970 NATAL- RN, Brazil
B. W. Benapfl
Affiliation:
Department of Physics, University of Notre Dame, IN, U.S.A.
H. Blackstead
Affiliation:
Department of Physics, University of Notre Dame, IN, U.S.A.
O. A. Pringle
Affiliation:
Department of Physics, Missouri University of Science and Technology, Rolla, MO, U.S.A.
William B. Yelon
Affiliation:
Center for Materials Science Research, Missouri University of Science and Technology, Rolla, MO, U.S.A.
William J. James
Affiliation:
Center for Materials Science Research, Missouri University of Science and Technology, Rolla, MO, U.S.A.
Get access

Abstract

We have studied the structural and magnetic properties of La0.7Sr0.3Mn1-xNixO3 (x=0.05, 0.10, 0.20, 0.30, and 0.40) perovskites using x-ray and neutron diffraction and magnetic measurements. To our knowledge, there exists no neutron diffraction data available for this group of perovskite compositions. Neutron (λ = 1.479Å) and x-ray (λ = 1.5481Å; Cu Kα) powder diffraction indicate that for x ≥ 0.1 all samples are two-phase with a rhombohedral perovskite structure (space group R-3c) and a small amount of NiO (space group Fm3m). Neutron diffraction data for the perovskite phase at 12K and 300K show ferromagnetic ordering for x ≤ 0.2 and antiferromagnetic ordering for x = 0.4. However, for x = 0.3, neutron diffraction data at 12K show coexisting ferromagnetic and antiferromagnetic ordering while at 300K no magnetic ordering is found. Magnetic measurements indicate that the Curie temperature decreases with increasing Ni content. The NiO phase for all samples was found to have antiferromagnetic ordering at 12K and 300K. The magnetic measurements are consistent with the neutron diffraction data and together indicate long-range magnetic ordering for samples at low temperature and transitions from ferromagnetic to paramagnetic to antiferromagnetic ordering for samples at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jonker, G. H. and Van Santen, J. H., Physica, vol. 16, 337349, (1950).Google Scholar
2. Wollan, E. O., Koehler, W. C., Phys. Rev., vol. 100, 545563, (1955)Google Scholar
3. Goodenough, J. B., Magnetism and the Chemical Bond. (Huntington: Krieger, 1976.)Google Scholar
4. Brorovskikh, L., Mazo, G., Kemnitz, E., Solid State Sci, 5, 409417 (2003)Google Scholar
5. Voorhoeve, R.J.H., Johnson, D.W., Remeika, J.P., Gallagher, P.K., Science 195, 827833 (1977)Google Scholar
6. Vaughey, J.T., Mawdsley, J.R., Krause, T.R., Mater Res Bul, 42, 19631968 (2007)Google Scholar
7. Millis, A. J., Littlewood, P. B., and Shraiman, B. I., Phys. Rev. Lett., v. 74, (25) 5144 (1995)Google Scholar
8. Millis, A.J., Phys Rev. B 53, 8434 (1996)Google Scholar
9. Archiald, W., Zhou, J.-S., Goodenough, J.B., Phys. Rev. B 53, 14445 (1996)Google Scholar
10. Zener, C., Phys. Rev., vol. 82, 403405 (1951)Google Scholar
11. Martin, M., Shirane, G., Endoh, Y., Hirota, K., Moritomo, Y., Tokura, , Phys. Rev., 53 (21) 1428514290 (1996)Google Scholar
12. Zhao, T.-S., Xianyu, W.X., Li, B.H., Qian, Z.N., J of Alloys and Comp., 459, 2934 (2008)Google Scholar
13. Rubinstein, M., Gillespie, D.J., Snyder, J.e., Tritt, T.M., Phys. Rev. B 56, 5412 (1997)Google Scholar
14. Wang, Z. H., Cai, J.W., Shen, B.G., Chen, X., Zhan, W.S., J. Phys.:Condens. Matter 12, 601 (2000)Google Scholar
15. Pal, S., Sose, E., Chaudhuri, B.K., Yang, H.D., Neeleshwar, S., Chen, Y.Y., J. Magn. Magn. Mater, 293, 872 (2005)Google Scholar
16. Toulemonde, O., Suder, F., Barnabe, A., Maignan, A., Martin, C., Raveau, B., Eur. Phys. J. B, 4, 159 (1998)Google Scholar
17. Wold, , Arnott, R. J., and Goodenough, J. B., J. Appl. Phys, 29, 387389 (1958)Google Scholar
18. Rodriguez-Carvajal, J., FULLPROF 2K, Version 3.00, Laboratoire Leon Brillouin-JRC, 2004 Google Scholar
19. Shull, C. G., Strauser, W. A., Wollan, E. O, Phys. Rev., 83 (2) 333 (1951)Google Scholar
20. Creel, T. F., Yang, J.B., Kahveci, M., Lamsal, J., Malik, S. K., Quezado, S., Pringle, O. A., Yelon, W. B., James, W. J., Mag, IEEE Trans, 46 (12) 4113 (2010)Google Scholar
21. Kuharuangrong, Sutin, Ceramics International, 30, 273 (2004)Google Scholar
22. Sun, Y., Tong, W., Xu, X, and Zhang, Y., Appl. Phys. Lett, 78 (5) 643645 (2001)Google Scholar
23. Kanamori, L., J. Phys. Chem. Solids 10, 87 (1959)Google Scholar
24. Goodenough, J.B., Wold, A., Arnott, R., Menyuk, N., Phys. Rev. 124, 373 (1961)Google Scholar
25. Kramers, H. A., Physica 1, 182 (1934)Google Scholar
26. Sanchez, M.C., Garcia, J., Blasco, J., Subias, G., Perez-Cacho, J., Phys. Rev. B 65, 144409 (2002)Google Scholar
27. Hu, Jifan, Ji, Chengjie, Qin, Hongwei, Chen, Juan, Hao, Yanming, Li, Yangxian, J. of Mag. And Mag. Mat. 241, 271 (2002)Google Scholar