Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T05:26:46.015Z Has data issue: false hasContentIssue false

Structural and Electronic Properties of Polycrystalline Cu(In,Ga)(S,Se)2 Alloys

Published online by Cambridge University Press:  21 March 2011

I. M. Kötschau
Affiliation:
Institute of Physical Electronics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany phone ++49-711-685-7171; e-mail: [email protected]
M. Turcu
Affiliation:
Institute of Physical Electronics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germanyphone ++49-711-685-7171
U. Rau
Affiliation:
Institute of Physical Electronics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germanyphone ++49-711-685-7171
H. W. Schock
Affiliation:
Institute of Physical Electronics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germanyphone ++49-711-685-7171
Get access

Abstract

We present a systematic study on the polycrystalline Cu(In,Ga)(S,Se)2 alloys with a gallium to indium ratio of Ga/(Ga+In)<0.3 and a sulfur to selenium ratio varying in the range between 0<S/(S+Se)<1. All samples were grown by coevaporation of the elements at constant rates under high vacuum conditions. The formation of island-like (Cu,S,Se) segregations correlate with the sulfur to selenium ratio in the layer and are found in the growth region near the copper rich phase boundary. These segregations are related to a preferred incorporation of sulfur in the copper rich growth mode. We obtain solar cell grade material from an indium rich growth mode up to a sulfur to selenium ratio of S/(S+Se)=0.9. A detailed analysis of the electronic and optical properties of Mo/CIGSSe/CdS/ZnO:Al heterojunctions allows us to determine the energetic position of the bands within the Cu(In,Ga)(S,Se)2 alloy system. We find that contrary to the Cu(In,Ga)(Se)2 alloy system the valence band position is significantly lowered with increasing bandgap.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tarrant, D., and Ermer, J., in 23rd IEEE Photovoltaics Specialists Conference (IEEE, Piscataway NJ, 1993), p. 372.Google Scholar
2. Nakada, T., Ohbo, H., Watanabe, T., Nakazawa, H., Matsui, M., and Kunioka, A., Solar Energy Materials and Solar Cells 49, 285 (1997).Google Scholar
3. Friedlmeier, T. M., and Schock, H. W., in 2nd World Conf. on Photovolt. Energy Conv., edited by Schmid, H. A. O. J., Helm, P., Ehmann, H., and Dunlop, E. D. (E. C. Joint Res. Centre, Luxembourg, 1998), p. 1117.Google Scholar
4. Kötschau, I. M., Kerber, H., Wiesner, H., Hanna, G., and Schock, H. W., in Proc. 16th Europ. Photov. Solar Energy Conf., edited by Scheer, B. M. H., Palz, W., Ossenbrink, H. A., and Helm, P. (James & James, London, 2000), p. 724.Google Scholar
5. Walter, T., Content, A., Velthaus, K. O., and Schock, H. W., Solar Energy Mater. and Solar Cells 26, 357 (1992).Google Scholar
6. Klenk, R., Walter, T., Schock, H. W., and Cahen, D., Adv. Mat. 5, 114 (1993).Google Scholar
7. Walter, T., and Schock, H. W., Jpn. J. Appl. Phys. 32(Suppl. 32-3), 116 (1993).Google Scholar
8. Herberholz, R., Igalson, M., and Schock, H. W., J. Appl. Phys. 83, 318 (1998).Google Scholar
9. Walter, T., Herberholz, R., Müller, C., and Schock, H. W., J. Appl. Phys. 80, 4411 (1996).Google Scholar
10. Igalson, M., and Schock, H. W., J. Appl. Phys. 80, 5765 (1996).Google Scholar
11. Hanna, G., Jasenek, A., Rau, U., and Schock, H. W., Phys. Status Solidi A 179, R7 (2000).Google Scholar
12. Jasenek, A., Rau, U., Nadenau, V., and Schock, H. W., J. Appl. Phys. 87, 594 (2000).Google Scholar
13. Rau, U., Schmidt, M., Jasenek, A., Hanna, G., and Schock, H. W., Solar Energy Mat. Solar Cells 67, 137 (2001).Google Scholar
14. Langer, J. M., Delerue, C., Lannoo, M., and Heinrich, H., Phys. Rev. B 38, 7723 (1988).Google Scholar
15. Zunger, A., Phys. Rev. Lett. 55, 1414 (1985).Google Scholar
16. Wei, S. H., and Zunger, A., J. Appl. Phys. 78, 3846 (1995).Google Scholar
17. Turcu, M., Kötschau, I. M., and Rau, U., (unpublished).Google Scholar