Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T03:27:20.105Z Has data issue: false hasContentIssue false

Structural and Electronic Properties of Narrow Gap Zincblende and Chalcopyrite Compounds

Published online by Cambridge University Press:  16 February 2011

T.M. de Pascale
Affiliation:
Dipartimento di Scienze Fisiche, Universita' di Cagliari, Italy
F. Meloni
Affiliation:
Dipartimento di Scienze Fisiche, Universita' di Cagliari, Italy
M. Serra
Affiliation:
Istituto di Fisica Superiore, Universita' di Cagliari, Italy
S. Massidda
Affiliation:
IRRMA, Lausanne, Switzerland.
A. Continenza
Affiliation:
Department of Physics and Material Research Center Northwestern University, Evanston Il 60208, USA
A. J. Freeman
Affiliation:
Department of Physics and Material Research Center Northwestern University, Evanston Il 60208, USA
Get access

Abstract

Indium compounds and corresponding epitaxially grown superlattices have provided good single crystals suitable for accurate experimental measurements and have added new interest to the study of the constituent bulk semiconductors and the II-IV-V2 chalcopyrite crystal phases. This paper reports results of structural and electronic properties of narrow gap binary and ternary semiconductors determined selfconsistently from first principles using both the full potential linearized augmented plane wave (FLAPW) and norm-conserving pseudopotentials (PP) total-energy methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ternary and multinary Compounds, (MRS, Pittsburgh 1987).Google Scholar
2. Jaffe, J.E. and Zunger, A., Phys. Rev. B 29, 1882 (1984).Google Scholar
3. Kohn, W. and Washista, P., in Theory of the Inhomogeneous Electron Gas, ed. by Lundqvist, S. and March, N.H. (Plenum, New York, 1983).Google Scholar
4. Continenza, A., Massidda, S. and Freeman, A.J., Phys. Rev. B38, 12996 (1988).Google Scholar
5. Jansen, H.J.F. and Freeman, A.J., Phys. Rev. B 2, 561 (1984); S. Massidda, A. Continenza, A.J. Freeman, T.M. de Pascale, F. Meloni and M. Serra, Phys. Rev. B (1990) in press.Google Scholar
6. Marinelli, M., de Pascale, T.M., Meloni, F., Mula, G., Serra, M. and Baroni, S., Phys. Rev. B40, 1725 (1989).Google Scholar
7. Handbook of Chemistry and Physics, ed. by Weast, R.W. (Chemical Rubber Company, Boca Ratan, FL, 1988); Numerical Data and Functional Relationships in Science and Technology - Crystal and Solid State Physics, Vol 17a of Landolt-Börnstein, ed. by O. Madelung (Springer, Berlin, 1984).Google Scholar
8. Shay, J.L. and Wernich, J.H., Ternary Chalcopyrite Semiconductors Growth, Electronic Properties and Applications (Pergamon, New York, 1975).Google Scholar
9. Ley, L., Pollak, R.A., McFeely, F.R., Kowalczyk, S.P. and Shirley, D.A., Phys. Rev. B9, 600 (1974).Google Scholar
10. Shay, J.L., Buehler, E., Wernick, J.H., Phys. Rev Lett. 24, 1301 (1970); J.L. Shay, E. Buehler, J.H. Wernick, Phys. Rev. B2, 4104 (1970); J.L. Shay, E. Buehler, J.H. Wernick, Phys. Rev. Lett. 30, 983 (1973); J.L. Shay, E. Buehler, J.H. Wernick, Phys. Rev. Lett. 30, 983 (1973); J.L. Shay, B. Tell, E. Buehler, J.H. Wernick, Phys. Rev. B3, 2004 (1971).Google Scholar