Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:32:21.046Z Has data issue: false hasContentIssue false

Structural and Electrochemical Investigation of Na+ Insertion Into λ-Mn1-xNixO2

Published online by Cambridge University Press:  22 June 2015

J. R. Kim
Affiliation:
Energy Storage Research Group Department of Materials Science and Engineering Rutgers, the State University of New Jersey
G. G. Amatucci
Affiliation:
Energy Storage Research Group Department of Materials Science and Engineering Rutgers, the State University of New Jersey
Get access

Abstract

Increased demand for low cost energy storage options has expanded the scope of Na+ batteries considerably; and with the growing interest in Na-based chemistries, the importance of high voltage positive electrodes is quickly realized as the Na/Na+ redox introduces lower operating voltages as compared to Li/Li+ based electrochemical cells. The 4.7V LiMn1.5Ni0.5O4 spinel has exhibited considerable properties as a high voltage Li+ positive electrode, with a host structure (λ-Mn0.75Ni0.25O2) that may provide an analogous high voltage Na+ positive electrode. Structural and electrochemical properties of NaxMn1.56Ni0.44O4 and NaxMn2O4 are investigated for the first time[1] utilizing ex-situ, in-situ X-ray diffraction, and high-resolution electrochemical techniques to provide an insightful study of the Na+ insertion mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Kim, J. R. and Amatucci, G. G., Chem. Mater., 2015.Google Scholar
Li, G., Lu, X., Kim, J. Y., Lemmon, J. P., and Sprenkle, V. L., J. Power Sources, vol. 249, pp. 414417, 2014.CrossRefGoogle Scholar
Li, G., Lu, X., Kim, J. Y., Lemmon, J. P., and Sprenkle, V. L., J. Mater. Chem. A, vol. 1, p. 14935, 2013.CrossRefGoogle Scholar
Yuan, D., Hu, X., Qian, J., Pei, F., Wu, F., Mao, R., Ai, X., Yang, H., and Cao, Y., Electrochim. Acta, vol. 116, pp. 300305, Jan. 2014.CrossRefGoogle Scholar
Li, X., Wu, D., Zhou, Y., Liu, L., Yang, X., and Ceder, G., Electrochem. Commun., vol. 49, pp. 5154, 2014.CrossRefGoogle Scholar
Liu, X., Wang, X., Iyo, A., Yu, H., Li, D., and Zhou, H., J. Mater. Chem. A, pp. 1482214826, 2014.CrossRefGoogle Scholar
Bucher, N., Hartung, S., Gocheva, I., Cheah, Y. L., Srinivasan, M., and Hoster, H. E., J. Solid State Electrochem., vol. 17, pp. 19231929, 2013.CrossRefGoogle Scholar
Hartung, S., Bucher, N., Nair, V. S., Ling, C. Y., Wang, Y., Hoster, H. E., and Srinivasan, M., ChemPhysChem, vol. 15, pp. 21212128, 2014.CrossRefGoogle Scholar
Li, X., Xu, Y., and Wang, C., J. Alloys Compd., vol. 479, pp. 310313, 2009.CrossRefGoogle Scholar
Li, X., Ma, X., Su, D., Liu, L., Chisnell, R., Ong, S. P., Chen, H., Toumar, A., Idrobo, J., Lei, Y., Bai, J., Wang, F., Lynn, J. W., Lee, Y. S., and Ceder, G., Nat. Mater., vol. 13, no. May, pp. 586–92, 2014.CrossRefGoogle Scholar
Yabuuchi, N., Yano, M., Kuze, S., and Komaba, S., Electrochim. Acta, vol. 82, pp. 296301, Nov. 2012.CrossRefGoogle Scholar
Ohzuku, T., Takeda, S., and Iwanaga, M., J. Power Sources, vol. 8182, pp. 9094, 1999.CrossRefGoogle Scholar
Chen, R., Knapp, M., Yavuz, M., Heinzmann, R., Wang, D., Ren, S., Trouillet, V., Lebedkin, S., Doyle, S., Hahn, H., Ehrenberg, H., and Indris, S., J. Phys. Chem. C, vol. 118, pp. 1260812616, 2014.CrossRefGoogle Scholar
Cupid, D. M., Lehmann, T., Bergfeldt, T., Berndt, H., and Seifert, H. J., J. Mater. Sci., vol. 48, pp. 33953403, 2013.CrossRefGoogle Scholar
Katiyar, R. K., Singhal, R., Asmar, K., Valentin, R., and Katiyar, R. S., J. Power Sources, vol. 194, pp. 526530, 2009.CrossRefGoogle Scholar
Rajakumar, S., Thirunakaran, R., Sivashanmugam, a., and Gopukumar, S., J. Electrochem. Soc., vol. 157, p. A333, 2010.CrossRefGoogle Scholar
Santhanam, R. and Rambabu, B., J. Power Sources, vol. 195, no. 17, pp. 54425451, 2010.CrossRefGoogle Scholar
Kunduraci, M. and Amatucci, G. G., J. Electrochem. Soc., vol. 153, p. A1345, 2006.CrossRefGoogle Scholar
Kunduraci, M. and Amatucci, G. G., Electrochim. Acta, vol. 53, pp. 41934199, 2008.CrossRefGoogle Scholar
Komaba, S., Ishikawa, T., Yabuuchi, N., Murata, W., Ito, A., and Ohsawa, Y., ACS Appl. Mater. Interfaces, vol. 3, pp. 41654168, 2011.CrossRefGoogle Scholar
Gmitter, A. J., Gural, J., and Amatucci, G. G., J. Power Sources, vol. 217, pp. 2128, 2012.CrossRefGoogle Scholar
Tong, W., Yoon, W. S., and Amatucci, G. G., J. Power Sources, vol. 195, no. 19, pp. 68316838, 2010.CrossRefGoogle Scholar
Berg, H. and Thomas, J. O., Solid State lonics, vol. 126, pp. 227234, 1999.CrossRefGoogle Scholar
Cabana, J. and Casas-Cabanas, M., Chem. Mater., vol. 24, pp. 29522964, 2012.CrossRefGoogle Scholar
Song, J., Shin, D. W., Lu, Y., Amos, C. D., Manthiram, A., and Goodenough, J. B., vol. 4, pp. 31013109, 2012.Google Scholar