Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-06T16:21:52.315Z Has data issue: false hasContentIssue false

Structural and Electrical Properties of Undoped Microcrystalline Silicon Grown by 70 MHz and 13.56 MHz PECVD

Published online by Cambridge University Press:  28 February 2011

R. Flückiger
Affiliation:
Institut de Microtechnique, Rue A.L. Breguet 2, CH-2000 Neuchâtel, Suisse.
J. Meier
Affiliation:
Institut de Microtechnique, Rue A.L. Breguet 2, CH-2000 Neuchâtel, Suisse.
G. Crovini
Affiliation:
Dept. Physics Politecnico, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
F. Demichelis
Affiliation:
Dept. Physics Politecnico, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
F. Giorgis
Affiliation:
Dept. Physics Politecnico, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
C.F. Pirri
Affiliation:
Dept. Physics Politecnico, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
E. Tresso
Affiliation:
Dept. Physics Politecnico, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
J. Pohl
Affiliation:
Universitat Konstanz, Postfach 5560/X916, D-78434 Konstanz 1, Deutschland.
V. Rigato
Affiliation:
Lab. INFN of Legnaro, Via Romea 4, Padova, Italy.
S. Zandolin
Affiliation:
Lab. INFN of Legnaro, Via Romea 4, Padova, Italy.
F. Caccavale
Affiliation:
Dept. Physic Univ. of Padova, Italy.
Get access

Abstract

Microcrystalline silicon films deposited by plasma methods have an optical absorption for photon energies above 2.0 eV lower than a-Si:H films and can be efficiently doped with boron or phosphorus. The most widely used deposition technique is the 13.56 MHz PECVD. However quite recently µc-Si:H films were grown at high deposition rates by the 70 MHz PECVD. In this work the authors report on a comparison between µc-Si:H films deposited by both 70 MHz and 13.56 MHz techniques. Particular attention has been devoted to differences and similarities between structural, compositional and electrical properties of the films deposited with the two systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Moustakas, T.D., Weitz, D.A., Prestridge, E.B., Friedman, R., "Amorphous Silicon Technology" (Mat. Res. Soc. Symp. Proc., Pittsburg, Pennsylvania, 1985), vol. 38, p. 401.Google Scholar
2 Finger, F., Carius, R., Hapke, P., Prasad, K. and Fluckiger, R., "Amorphous Silicon Technology-1993" (Mat. Res. Soc. Symp. Proc., Pittsburg, Pennsylvania, 1993), vol. 283, p. 471.Google Scholar
3 Flückiger, R., Meier, J., Keppner, H., Götz, M. and Shah, A., "Proc. of the 23rd IEEE Photovoltaic Spec. Conf." (Louisville, Kentucky, 1993), p. 839.Google Scholar
4 Kanicki, J., "Amorphous and Microcrystalline Semiconductor Devices: Optoelectronic Devices" (Artech House, London, 1991) vol. 1.Google Scholar
5 Meier, J., Flückiger, R., Keppner, H. and Shah, A., Appl. Phys. Lett. 65, 860 (1994).Google Scholar
6 Meier, J., Fluckiger, R., Keppner, H., Götz, M. and Shah, A., "Proc. of the 11 th EC Photovoltaic Conference" (Amsterdam, 1994), p. 1237.Google Scholar
7 Mishima, Y., Miyazaki, S., Hirose, M., Osaka, Y., Phil. Mag. B 46, 1 (1982).Google Scholar
8 Matsuda, A., J. Appl. Phys. 59/60, 767 (1983).Google Scholar
9 Tsai, C. C., "Amourphous Silicon and Related Materials", Ed. Fritzsche, H. (World Sc. Publ. Comp:, 1988) p. 123.Google Scholar
10 Fluckiger, R., Meier, J., Keppner, H., Kroll, U., Shah, A., Greim, O., Morris, M., Pohl, J., Hapke, P. and Carius, R., "Proceeding of the 11th EC Photovoltaic Conference" (Montreux, 1992) p. 617.Google Scholar
11 Madan, A., Rava, P., R: Schropp, E. I., Von Roedern, B., Appl. Surf. Science, 70/71, 716 (1993).Google Scholar
12 Curtins, H., Wyrsch, N. and Shah, A. V., Electronics Lett. 23 (5), 228 (1987).Google Scholar
13 Scherrer, P., Nachr. Goettinger Gesell. 98 (1918); Zsigmondy's Kolloidchemie 3rd Ed., p. 394.Google Scholar
14 Iqbal, Z., Veprek, S., Webb, A. P., Capezzuto, P., Sol. St. Comm. 37, 993 (1981).Google Scholar
15 Heintze, H., Zedlitz, R., J. Non-Cryst. Solids 164–166, 55 (1993).Google Scholar
16 Kroll, U., Ziegler, Y., Meier, J., Keppner, H. and Shah, A., "Amorphous Silicon Technology-1994" (Mat. Res. Soc. Proc., Pittsburg, Pennsylvania, in press).Google Scholar
17 Hollenstein, Ch., Kroll, U., Howling, A.A. and Dutta, J., "Proc. 11th Phot. Solar Energy Conf." (Montreux, 1992).Google Scholar
18 Prasad, K., Ph.D. thesis, Institute of Microtechnology, University of Neuchâtel, 1991.Google Scholar
19 Flückiger, R., Meier, J., Shah, A., Catana, A., Brunel, M., Nguyen, H. V., Collins, R. W. and Carius, R., "Amorphous Silicon Technology-1994" (Mat. Res. Soc. Symp. Proc., Pittsburg, Pennsylvania, in press).Google Scholar
20 Simon, I., McMahon, H.O., J. Chem. Phys. 21, 23 (1953).Google Scholar
21 Demichelis, F., Crovini, G., Pirri, C.F., Tresso, E., Phil. Mag. B 68, 329 (1993).Google Scholar