Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-12T22:18:07.619Z Has data issue: false hasContentIssue false

Structural and Electrical Properties of Biaxially Textured YBa2Cu3O7-x Thin Films on Buffered Ni-based Alloy Substrates

Published online by Cambridge University Press:  18 March 2011

M. Li
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
B. Ma
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
Y. A. Jee
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
B. L. Fisher
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
U. Balachandran
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

Oxide high-Tc superconducting wires and tapes with high critical current density (Jc) are essential to future electrical power applications. Recently, YBa2Cu3O7−x (YBCO) thin films grown on Ni-based alloy tapes have attracted intense interest because of their promise for these applications. To achieve high Jc, buffer layers are necessary for fabricating biaxially aligned YBCO thin films. In our studies, yttria-stabilized zirconia (YSZ) layers were deposited on Ni- based alloy substrates by ion-beam assisted deposition, and CeO2 buffer layers were subsequently deposited on the YSZ layer by pulsed laser deposition (PLD) or electron beam evaporation. In addition, MgO layers were deposited on Ni-based alloy substrates by inclined substrate deposition. Finally, biaxially textured YBCO thin films were deposited on these buffered metallic substrates by PLD under optimized conditions. The orientation and in-plane textures of YBCO and the buffer layers were characterized by X-ray diffraction Ø/2Øscans, ø- scans, and pole figure analysis. The superconductive transition features were examined by measuring inductive Tc and transport Jc.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett., 60(6), 769(1992)Google Scholar
2. Norton, D. P., Goyal, A., Budai, J. D., Christen, D. K., Kroeger, D. M., Specht, E. D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C. E., Lee, D. F., Sales, B. C., and List, F. A., Science, 274, 755(1996)Google Scholar
3. Wu, X. D., Foltyn, S. R., Arendt, P. N., Blumenthal, W. R., Campbell, I. H., Cotton, J. D., Coulter, J. Y., Hults, W. L., Maley, M. P., Safar, H. F., and Smith, J. L., Appl. Phys. Lett., 67(16), 2397(1995)Google Scholar
4. Iijima, Y., Hosaka, M., Tanabe, N., Sadakata, N., Saitoh, T., Kohno, O., and Takeda, K., J. Mater. Res., 12(11), 2913 (1997)Google Scholar
5. Bauer, M., Semerad, R., and Kinder, H., IEEE Transactions on Applied Superconductivity, 9(2), 1502(1999)Google Scholar
6. Chudzik, M. P., Erck, R., Lanagan, M. T., and Kannewurf, C. R., IEEE Trans. Appl. Supercond., 9(2), 1490 (1999)Google Scholar
7. Wu, X. D., Dye, R. C., Muenchausen, R. E., Foltyn, S. R., Maley, M., Rollett, A. D., Garcia, A. R., and Nogar, N. S., Appl. Phys. Lett., 58(19), 2165 (1991)Google Scholar
8. Knierim, A., Auer, R., Geerk, J., Linker, G., Meyer, O., Reiner, H., and Schneider, R., Appl. Phys. Lett., 70(5), 66(1997)Google Scholar
9. Ferraro, J. R., and Maroni, V. A., Appl. Spectrosc., 44(3), 351(1990)Google Scholar
10. Gibson, G., Cohen, L. F., Humphreys, R. G., and MacManus-Driscoll, J. L., Physica C., 333, 139(2000)Google Scholar