Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T18:48:51.613Z Has data issue: false hasContentIssue false

Structural and Elasticity-based Properties of SiC-based Interfaces: their Relevance to the Heteroepitaxy of III-V Nitrides

Published online by Cambridge University Press:  17 March 2011

P. Masri
Affiliation:
Groupe d'Etude des Semiconducteurs, CNRS-UMR 5650, Université Montpellier2, cc 074, 12 Place E. Bataillon, 34095 Montpellier CEDEX 5, France
M. Rouhani Laridjani
Affiliation:
Groupe d'Etude des Semiconducteurs, CNRS-UMR 5650, Université Montpellier2, cc 074, 12 Place E. Bataillon, 34095 Montpellier CEDEX 5, France
Th. Stauden
Affiliation:
Institut für Festkörperelektronik, TU Ilmenau, Postfach 100 565, DE-98684 Ilmenau, Germany
J. Pezoldt
Affiliation:
Institut für Festkörperelektronik, TU Ilmenau, Postfach 100 565, DE-98684 Ilmenau, Germany
M. Averous
Affiliation:
Groupe d'Etude des Semiconducteurs, CNRS-UMR 5650, Université Montpellier2, cc 074, 12 Place E. Bataillon, 34095 Montpellier CEDEX 5, France
Get access

Abstract

In this work we evaluate the strategy of using 3C-SiC as a substrate for III-V nitrides heteroepitaxy (AlN, GaN…). Our methodology is based on the elasticity theory of strained interfaces and involves not only geometric parameters of host materials but also parameters related to their elastic properties. The basic physics involved in the theory correlates lattice dynamics and strain gradients via effective elastic constants associated with the host materials forming the heterosystem (S factor). Within this approach, the optimization of the IIIV/ 3C-SiC interface is achieved by applying, at the interface, continuity conditions to the host material S factors and the related geometric features. An alloyed layer, i.e. AlxGa1−xN, simulates the III-V compound. We find out that the optimizing composition of this layer is x=1 corresponding to a stoechiometric AlN layer. This is consistent with the result showing that AlN presents the closest structural characteristic to SiC. Our results also predict that, when used as a buffer layer, AlN may provide a mean to optimize the GaN/SiC interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S. and Fasol, G., The Blue Laser Diode, (Springer, Berlin, 1997).Google Scholar
2. Wong, W. S., Li, N. Y., Dong, H. K., Deng, F., Lau, S. S., Tu, C. W., Hays, J., Bidnyk, S., Song, J. J., J. Cryst. Growth 164 (1996) 159.Google Scholar
3. Headrick, R. L., Kycia, S., Park, Y. K., Woll, A. R., and Brock, J. D., Phys. Rev. B54 (1996) 14686.Google Scholar
4. Chauduri, J., Tokala, R., Edgar, J. H., and Sywe, B. S., J. Appl. Phys. 77 (1995) 6263.Google Scholar
5. Khan, M. A., Kuznia, J. N., Olson, D. T., Schaff, W. J., Burm, J., and Shur, M. S., Appl. Phys. Lett. 65 (1994) 1121.Google Scholar
6. Molnar, R. J., Singh, R., and Moustakas, T. D., Appl. Phys. Lett. 66 (1995) 268.Google Scholar
7. Nakamura, S., Senoh, M., Magahama, S-i., Iwasa, N., Yamada, T., Matsushiba, T., Kiyoku, H. and Sugimoto, Y., Jpn. J. Appl. Phys. 35, Part 2, N° 1B (1996) L74.Google Scholar
8. Masri, P., Phys. Rev. B52 (1995) 16627.Google Scholar
9. Masri, P., Materials Science and Engineering B46 (1997) 195.Google Scholar
10.See, for example, Kittel, C., in Introduction to Solid State Physics, 3rd ed. (Wiley, New York, 1968) p. 119.Google Scholar
11.See, for example, Matthews, J. W., in Epitaxial Growth (Academic, New York, 1975),Pt.B p. 505.Google Scholar
12. Chauduri, J., Tokala, R., Edgar, J. H., Sywe, B. S., Thin Solid Films 274 (1996) 23.Google Scholar
13. Kim, K., Lambrecht, W. R. L., and Segall, B., Phys. Rev. B53 (1996) 16310.Google Scholar
14. Ponce, F. A. and Krusor, B. S., Major, J. S. Jr, Plano, W. E., and Welch, D. F., Appl. Phys. Lett. 67 (1995) 41.Google Scholar
15. Paisley, M. J., Sitar, Z., Posthil, J. B., and Davis, R. F., J. Vac. Sci. Technol. A7 (1989) 701.Google Scholar
16. Okuma, H., Misawa, S., Okahisa, T. and Yoshida, S., J. Crystal Growth 136 (1994) 361.Google Scholar
17. Okumura, H., Ohta, K., Nagatomo, T., Yoshida, S., J. Cryst. Growth 164 (1996) 149.Google Scholar