Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:27:52.474Z Has data issue: false hasContentIssue false

Structural and Chemical Imaging of Superconductors and Semiconductors by High-Resolution Stem

Published online by Cambridge University Press:  21 February 2011

S. J. Pennycook*
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831–6024
Get access

Abstract

In this paper a new method for high-resolution imaging of a crystal lattice is presented, based on high-angle electron scattering in a scanning transmission electron microscope (STEM). An electron probe of atomic dimensions is scanned over the sample and the electron flux scattered through large angles measured by an annular detector and used to form an image. The detector integrates over a large range of angles and therefore replaces the coherent phase contrast of conventional high resolution TEM with the strong atomic number or Z-contrast characteristic of high angle Rutherford scattering. These characteristics make the image entirely complementary to the conventional image, ideal for studying the atomic structure and chemistry of defects and interfaces. Examples of the high Tc superconductors, epitaxial Ge on Si, and Si1−xGex/Si strained layer superlattices are shown, and a simple approximate method of image simulation is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scherzer, O. J., J. Appl. Phys. 20, 20 (1949).Google Scholar
2. Treacy, M. M. J., J. Microsc. Spectrosc. Electron. 7, 511 (1982).Google Scholar
3. Treacy, M. M. J., J. Microsc. (in press).Google Scholar
4. Pennycook, S. J. and Narayan, J., Appl. Phys. Lett. 45, 385 (1984).Google Scholar
5. Pennycook, S.J., Berger, S. D., and Culbertson, R. J., J. Microscopy 144, 229 (1986).Google Scholar
6. Pennycook, S. J., Culbertson, R. J., and Berger, S. D., Mat. Res. Soc. Symp. Proc. 100, 411 (1988).Google Scholar
7. Pennycook, S. J. and Boatner, L. A., Nature 336, 565 (1988).Google Scholar
8. Fleischmann, H., Z. Naturforsch 151a, 1090 (1960).Google Scholar
9. Doyle, P. A. and Turner, P. S., Acta Cryst. A24, 390 (1969).Google Scholar
10. Zandbergen, H. W., Gronsky, R., and Thomas, G., Phys. Stat. Sol. (a) 105, 207 (1988).CrossRefGoogle Scholar
11. Marshall, A. F. et al., Phys. Rev. B 37, 9353 (1988).Google Scholar
12. Geohegan, D. B. et al., J. Mater. Res. 3, 1169 (1988).Google Scholar
13. Kirkland, E. J., Loane, R. F., and Silcox, J., Ultramicroscopy 23 77 (1987).Google Scholar
14. Pan, M. and Cowley, J. M., Ultramicroscopy 26, 205 (1988).Google Scholar
15. Pennycook, S. J., Scanning Microscopy 2, 21 (1988).Google Scholar
16. Pennycook, S. J., Ultramicroscopy (in press).Google Scholar
17. Cherns, D., Howie, A., Jacobs, M. H., Z. Naturforsch. 28a, 565 (1973).Google Scholar
18. Holland, O. W., White, C. W., Fathy, D., Appl. Phys. Lett. 51, 520 (1987).Google Scholar
19. Lockwood, J., Dharma-Wardana, M. W. C., Aers, G. C., and Baribeau, J. M., Appl. Phys. Lett. 52 2040 (1988).Google Scholar