Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:38:01.704Z Has data issue: false hasContentIssue false

Structural and Chemical Composition of Ni-Al Powders

Published online by Cambridge University Press:  26 February 2011

R. Maurer
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaften, Seestraβe 92, 7000 Stuttgart 1, FRG.
G. Galinski
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaften, Seestraβe 92, 7000 Stuttgart 1, FRG.
R. Laag
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaften, Seestraβe 92, 7000 Stuttgart 1, FRG.
W. A. Kaysser
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaften, Seestraβe 92, 7000 Stuttgart 1, FRG.
Get access

Abstract

Ni3Al and NiAl pre-alloyed powders produced by argon gas atomization are investigated by light and transmission electron microscopy concerning their structure, chemical and phase composition. For example, Ni3Al powder consists of a L12 matrix (γ′ -phase) with precipitates whose Al content is 6% higher than in the matrix. Selected single powder particles were isothermally deformed in a modified high resolution dilatometer to investigate the creep behavior. From these experiments HIP parameters are predicted and compared with HIP experiments at different pressures and temperatures. HIP diagrams were calculated according to Ashby's model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Asian, M., Ph.-D. Thesis, University of Berlin (FRG), 1987.Google Scholar
2. Asian, M., Kaysser, W.A., Arzt, E., Petzow, G., “Horizons of Powder Metallurgy”, by Kaysser, W.A., Huppmann, W.J. (Verl. Schmidt, Freiburg, 1986), Vol.1, p. 672.Google Scholar
3. Laag, R., Täffner, U., Kaysser, W.A., Petzow, G., Sonderb. d. prakt. Metall. 19, 453 (1988).Google Scholar
4. Field, R.D., Fraser, H.L., Met. Trans. 9A, 131 (1978).Google Scholar
5. Baumann, R., Couper, M.J., Sonderb. d. prakt. Metall. 16, 125 (1985).Google Scholar
6. Kirchoff, S.D., Adkins, J.Y., Metallography 20, 75 (1987).CrossRefGoogle Scholar
7. Rosen, S., Goebel, J.A., Trans. Met. Soc. AIME 242, 722 (1968).Google Scholar
8. Enami, K., Nenno, S., Shimizu, K., Trans. JIM 14, 161 (1973).CrossRefGoogle Scholar
9. Moskovic, R., J. Mat. Sci. 12, 489 (1977).CrossRefGoogle Scholar
10. Bremer, F.J., Beyss, M., Karthaus, E., Hellwig, A., Schober, T., Welter, J.-M., Wenzl, H., J. Cryst. Growth 87, 185 (1988).CrossRefGoogle Scholar
11. Wilkinson, D.S. and Ashby, M.F., Acta Metall. 23, 1277 (1975).Google Scholar